

cdmHUB.org

The Composites Design & Manufacturing HUB

R. Byron Pipes, John Bray Distinguished Professor Wenbin Yu, Associate Professor Johnathan Goodsell, Research Assistant Professor

The Leadership Team

The Vision

- Simulation can provide the foundation for a revolution in composites design, manufacturing and certification
- Finger tip access to composites simulation tools anywhere anytime on any devices – research codes, open source codes, or commercial codes connected to HPC resources in the cloud.
- Certifying composite product manufacturing and performance by simulation is clearly within reach
- Accelerated pervasive learning about composites and tools necessary for their design
 PURDUE

The Mission

Convene the composites community to advance certification by analysis by education and evaluation of composites simulation tools and establishing simulation best practices.

The Online Composites Community

Over 1800 Users to Date!

On our way to 10,000!

WE ARE

the composites community of designers, manufacturers, researchers, engineers,

HUBzero, Platform for Scientific Collaboration

cdmHUB Platform Overview

Collaboration Services

Dev Environment

Execution Host

HPC

Cloud storage

USERS

cdmHUB Goals

- Increase in the rate of development and deployment of composites simulation tools and the user community by an order of magnitude
- Launch a platform
 - Host and integrate existing simulation tools
 - Create a new array of simulation tools
 - Develop the human talent to support composites design and manufacturing simulation
- Create for composites
 - Virtual classroom
 - Virtual lab
 - Virtual factory

Benefits to the cdmHUB Community

- Education in the use of composites simulation tools
 - What tools are available?
 - What tool is best for a specific problem?
 - What are functionalities and limitations of a particular tool?
 - How is a particular tool connected with other tools?
 - What areas cannot be simulated currently?
- Tool development for composites manufacturing and performance simulation
- Expert evaluation of simulation tool taxonomy and Tool Maturity Level (TML)
- Establishment of protocols for simulation tool validation and verification (V&V)
- Access to data sets required for TML and V&V

Compiled Industry Simulation Tool Need

- Certification by Analysis
 - Verified, validated tools
 - Strength and lifetime prediction
- Understanding how each tool fits within the entire process
- Simulation of composites manufacturing, processing and performance
- Assemble the composites simulation community for best practices

cdmHUB Statistics

- 1. 1880 members
- 2. 23 Computer tools (2 commercial tools)
- 3. 333 resources
- 4. 25 Groups including NAFEMS, Altair, AnalySwift, DIGIMAT, HyperSizer, IACMI, cvfHUB, etc

Micromechanics Simulation Challenge

- Similar to World-Wide Failure Exercise
- Vehicle to compare and evaluate simulation tools, and identify the current strengths and needs of the composites simulation community as a whole
- Micromechanics Simulation Challenge Levels:
 - Level 1: 2D and 3D microstructures with linear elastic constituents
 - Level 2: 3D microstructures (short fiber composites, woven composites, etc.), elasto-plastic constituents
 - Level 3: damage and failure (including fatigue) prediction for 2D or 3D microstructures; multi-physics; environmental effects
- Treat both homogenization and dehomogenization

Micromechanics Simulation Challenge - Level I Results

- MAC/GMC, MAC/HFGMC, DIGIMAT, Altair MDS, FVDAM, SwiftComp, ESI,3D FEA of RVE with periodic BCs.
- Final report: <u>cdmhub.org/resources/948</u>.
- All data needed for reproducing the results:
 <u>cdmhub.org/members/project/mmsimulationchalleng/view</u>
- Level I: accuracy and efficiency of linear thermoelastic properties and local fields.

2014 cdmHUB Workshop

- On-line presentations and videos
- Hands-on labs in composite manufacturing and testing
- Demonstrations of composites simulation software
- Theory of composites analysis, manufacturing and testing

2015 cdmHUB Workshop

- Hands-on workshop with multi-scale composites analysis
- Presentations on composites manufacturing and performance simulation software and capabilities
- Simulation Fair showcasing simulation software

2016 cdmHUB Workshop

Our Sponsors

Proud to Sponsor AIAA ICME Prize

Proud to Sponsor ASC 31st Technical Conference

ASTM INTERNATIONAL

American Society for Composites 32nd Technical Conference

October 22–25, 2017 West Lafayette, Indiana, USA

Honored to Host the ASC 32st Technical Conference

Visit cdmHUB.org for more info.

Composites Are the Future

SwiftComp on cdmHUB

LAMMPS on cdmHUB

CLT-based Progressive Failure Analysis on cdmHUB

Principle of Minimum Information Loss

- o Mechanical properties
- o Multifunctional properties
- Multiscale modeling of composites
 - o 3D composite structures
 - o Composite plates/shells
 - o Composite beams

SwiftComp Example #1: UD FRC

UD FRC: VOF: 60%, Fiber E=276 GPa, nu=0.28; Matrix E=4.76 GPa, nu=0.37

- Find the effective properties using a a hexagonal packing microstructure
- Find the local stress distribution of the composites if it is under a biaxial strain loading with e11=5 um/m and e22=2 um/m

SwiftComp Example #2: PRC

PRC: VOF: 50%, Particle E=400 GPa, nu=0.3; Matrix E=40 GPa, nu=0.37

- Find the effective properties
- Find the local stress distribution of the composites if it is under a biaxial strain loading with e33=5 um/m and 2e23=2 um/m

SwiftComp Example #3: Laminate

$$E_1 = 110.5 \,\text{GPa}, E_2 = E_3 = 13.64 \,\text{GPa}, G_{12} = G_{13} = 3.92 \,\text{GPa},$$

$$G_{23} = 3.26 \,\text{GPa}, \ \nu_{12} = \nu_{13} = 0.329, \nu_{23} = 0.400$$

Example 3.1: Model it as a Solid

 $u_i, \varepsilon_{ij}, \sigma_{ij}, U$

Macroscopic model: 3D continuum mechanics with homogenous solid

Example 3.2: Model it as a Plate

Example 3.3: Model it as a Beam

 $u_i, \varepsilon_{ij}, \sigma_{ij}, U$

Macroscopic model: 1D beam model

If You Have More Time.....

- Go to https://cdmhub.org/resources/scstandard
- Download <u>Gmsh4SCManual.pdf</u> from supporting documents
- Follow the instruction to explore more capabilities of SwiftComp
- If you want to handle more complex microstructures, please download
 - ANSYS GUI: https://cdmhub.org/resources/1136
 - ABAQUS GUI: https://cdmhub.org/resources/1134

If You Have Questions.....

Prof. Wenbin Yu

Director, Composites Virtual Factory HUB
Associate Director, Composites Design &
Manufacturing HUB
CTO, AnalySwift LLC
Associate Professor, Purdue/AAE

Follow Prof. Yu's research at

cdmHUB: https://cdmhub.org/groups/yugroup

LinkedIn: https://www.linkedin.com/groups/8521014

YouTube:

https://www.youtube.com/channel/UCqiIUid7Xj4JXI

QskD7g7lw

