
GEBT Manual for Developers1

1. Introduction

GEBT can be used as either a callable library or a standalone application, depending on
your specific need. A dynamic link library Analysis.dll is provided for it to be used as a
callable library. This DLL contains all analysis capabilities of GEBT. For design
environment developments, this DLL can act as a plug-n-play black box. What the
developers need to provide is the interface so that the DLL can be called and
communicated with outside environment.

2. Global Variables needed for GEBT

GlobalDataFun.f90 defines the global variables for GEBT, although they are not passed
to/from the DLL. They are necessary for defining the variables passing to/from the DLL.
These variables are

• DBL: an integer constant to indicate how many digits real numbers should be used.
For double precision DBL=8 for single precision DBL=4

• NDIM, an integer constant equal to 3
• NDOF_ND, an integer constant equal to 12
• NSTRN, an integer constant equal to 6
• MEMB_CONST, an integer constant equal to 7

3. I/O Variables for Analysis.dll

To take advantage of the analysis modeling capability provided by GEBT, one can call
Analysis.dll, which implies the right arguments should pass to and from this DLL. The
DLL is invoked as follows (in the format of Fortran 90/95):

CALL Analysis(nkp,nelem,ndof_el,nmemb,ncond_pt,nmate, nframe,ndistrfun,ncurv,coord, &
 & member,pt_condition,material,niter,nstep,sol_pt,sol_mb,error,ncond_mb, &
 & ntimefun,frame,mb_condition,distr_fun,curvature,omega_a0,omega_a_tf, &
 & v_root_a0,v_root_a_tf,simu_time,time_function,analysis_flag,init_cond, &
 & nev,eigen_val,eigen_vec_pt,eigen_vec_mb)
with the following variables passed to Analysis.dll

• nkp is an integer indicating number of key points.
• nelem is an integer number for total number of elements, summation of the divisions for

all the members.
• ndof_el is an integer number equal to 12 for static analysis, and equal to 18 for all other

analyses.
• nmemb is an integer number for total number of beam members.
• ncond_pt is an integer number for total number of point conditions.

1 You should read GEBT users manual first before you read this manual.

• nmate is an integer number for total number of different cross-sections.
• nframe is an integer number for total different cross-sectional frames.
• ndistrfun is an integer for total number of distribution functions
• ncurv is an integer for total number of sets of initial curvature/twists
• coord is a 2D real array with dimension as (nkp,NDIM). The coordinates of the ith

point are stored in coord(i,1), coord(i,2), and coord(i,3) respectively.
• member is a 2D integer array with dimension as (nmemb,MEMB_CONST)

holding the seven integers needed for member properties.
• pt_condition is a 1D PrescriInf type array with dimension ncond_pt.
• material is a 3D real array with dimensions as (nmate,ndof_el-NSTRN,NSTRN),

holding the flexibility matrix at (nmate,1:6,NSTRN), and the mass matrix at
(nmate,7:12,NSTRN). For static analysis, only flexibility matrix is needed.

• niter is an integer indicating maximum number of iterations. For linear analysis, it is
equal to 1.

• nstep is an integer indicating number of time steps.
• ncond_mb is an integer indicating number of prescribed distribution
• ntimefun is an integer indicating the number of time functions.
• frame is a 3D real array with dimensions as (nframe,NDIM,NDIM), holding the 3x3

direction cosine matrix for each different cross-sectional frame.
• mb_condition is a 1D PrescriInf type array with dimension as ncond_mb.
• distr_fun is a 2D real array with dimensions as (ndistrfun,NSTRN), holding the six

parameters for each distribution function.
• curvature is a 2D real array with dimensions as (ncurv,NDIM), holding the three

parameters (k1, k2, k3) for each set of initial twist and curvature.
• omega_a0 is a 1D real array with dimension as NDIM, holding the angular velocity of the

a frame.
• omega_a_tf is a 1D integer array with dimension as NDIM, holding the corresponding

time function for angular velocity of the a frame.
• v_root_a0 is a 1D real array with dimension as NDIM, holding the linear velocity of the a

frame.
• v_root_a_tf is a 1D integer array with dimension as NDIM, holding the corresponding

time function for linear velocity of the a frame.
• simu_time is a 1D real array with two components storing the starting and ending time of

the simulation.
• time_function is a 1D TimeFunction type array with dimension as ntimefun.
• analysis_flag is an integer, equal to 0 for static analysis, equal to 1 for steady state

response, equal to 2 for transient analysis, and equal to 3 for eigenvalue analysis
• init_cond is a 2D real array with dimensions as (nelem,12), holding initial

displacements/rotations (nelem,1:6) and initial linear and angular velocity (nelem,7:12)
for each element. Note this array might be modified by Analysis.dll.

• nev is an integer indicating the number of eigenvalues to be calculated. Note this variable
might be modified to be nev+1 by Analysis.dll.

•
The following variables are passed from Analysis.dll

• sol_pt is a 3D real array with dimensions as (nstep,nkp,NDIM+NDOF_ND). For each ith
step, sol_pt(i,j,1:3) stores the coordinates, sol_pt(i,j,4:9) stores the displacements/
rotations, sol_pt(i,j,10:15) stores the forces/moments, sol_pt(i,j,16:21) stores

linear/angular momentum for jth key point. Note only sol_pt(i,j,1:15) is available for
static analysis.

• sol_mb is a 3D real array with dimensions as (nstep,nelem,NDIM+ndof_el). For each ith
step, sol_mb(i,j,1:3) stores the mid-point coordinates, sol_mb(i,j,4:9) stores the
displacements/ rotations, sol_mb(i,j,10:15) stores the forces/moments, sol_mb(i,j,16:21)
stores linear/angular momentum for jth element. Note only sol_mb(i,j,1:15) is available
for static analysis.

• error is a character variable with length 300 to store the error message of the program.
• eigen_val is a 2D real array with dimensions as (2,nev+1), where (1,i) and (2,i) stores the

real and imaginary parts of the ith eigenvalue.
• eigen_vec_pt is a 3D real array with dimensions as (nev+1,nkp,NDIM+NDOF_ND),

storing the corresponding component of the eigenvectors for each key point, the storage
is the same as sol_pt.

• eigen_vec_mb is a 3D real array with dimensions as (nev+1,elem,,NDIM+NDOF_ND),
storing the corresponding component of the eigenvectors for each element, the storage is
the same as sol_mb.

4. Definition of two types

There are two types defined for GEBT: PrescriInf and TimeFunction. PrescriInf is
defined in Fortran 90/95 as
TYPE PrescriInf
 PRIVATE
 INTEGER ::id
 INTEGER ::dof(NSTRN)
 REAL(DBL) ::value(NSTRN)
 INTEGER ::time_fun_no(NSTRN)
 INTEGER ::follower(NSTRN)
 REAL(DBL) ::value_current(NSTRN)

END TYPE PrescriInf
• id is an integer indicates where it is applied, could be a node # or member #.
• dof is an integer array of dimension NSTRN, storing the prescribed degrees of freedom.

It is also used to store the # of distribution function for each degree of freedom.
• value is a real array of dimension NSTRN, storing the magnitude of the prescribed

values.
• time_fun_no is an integer array of dimension NSTRN, storing the # of time function for

each prescribed degrees of freedom.
• follower is an integer array of dimension NSTRN, indicating whether the prescribed

condition is a follower condition or not.
• value_current is a real array of dimension NSTRN, storing the time updated values of

each prescribed condition.

TYPE TimeFunction
 PRIVATE
 INTEGER ::fun_type
 REAL(DBL) ::ts, te
 INTEGER ::entries
 REAL(DBL),POINTER::time_val(:)
 REAL(DBL),POINTER::fun_val(:)

 REAL(DBL),POINTER::phase_val(:)
END TYPE TimeFunction

• fun_type is an integer indicates the time function type, could be 0 for user defined time
function or 1 for harmonic time function.

• ts is a real number indicating the starting time and te is a real number indicating
the ending time for the time function definition.

• entries is an integer number indicated how many entries are used for defining the time
function.

• time_val is pointer for a real array of dimension entries. For user defined time function,
it stores the time in increasing order. For harmonic time function, it stores the amplitude.

• fun_val is pointer for a real array of dimension entries. For user defined time function, it
stores the functional value. For harmonic time function, it stores the period.

• phase_val is pointer for a real array of dimension entries. It is only needed for harmonic
time function storing the phase of the harmonic function.

5. Standalone Application

The standard release includes the standalone application including Constitutive.dll and
Recovery.dll and the files needed to compile the standalone application including
CPUtime.f90, main.f90, IO.f90, GlobalDataFun.f90, PrescribedCondition.f90, and
TimeFunction.f90. Interface are provided in main.f90 so that the DLL can be called
properly. IO.f90 defines/inputs/outputs all the arguments needed to pass to/from the DLL.
GlobalDataFun.f90 defines some global constants and functions needed for IO.f90. If you
are familiar with Fortran language, these files might be able to facilitate your
development. The developers are also free to modify the source codes to add more
capabilities which are design to take advantage of GEBT analysis incarnated in
Analysis.dll.

If the variables as explained previously are defined correctly, the remaining task for the
developer to integrate GEBT is to provide the interface necessary for calling the DLL.
For example, for Fortran 90/95, the needed interface is provided in main.f90.

