A Step-by-Step Tutorial for making MA28.dll and running GEBT

- Step 1: Download and install gfortran complier.
 - 1.1 Go to http://gcc.gnu.org/wiki/GFortranBinaries#Windows .
 - 1.2 Click on the "installer" (shown below) for Windows OS. Run the downloaded exe file, follow the instructions to install the gfortran complier (basically just click

on the OK buttons).

HSL Archive - Library Cata × 🏽 GFortranBinaries - GCC W ×	- 0 ×
← → C ♠ 🗋 gcc.gnu.org/wiki/GFortranBinaries#Windows	☆ 🕹 😭 🜍 🔼 🗉
🗰 Apps 🗀 高中英语 Ď wD 🧰 高中中文 🧰 XFINITY	C Other bookmarks

Windows

If in doubt, or if you don't know what Cygwin and MinGW are, the package for you is the MinGW ("native Windows") package!

- MinGW for Win64: The Mingw-w64 project has regularly updated snapshots of compilers generating 64-bit Windows executables. They provides several compilers, which run on Windows (32-bit and 64-bit Windows), Cygwin, Linux, and Darwin/MacOS and which generate binaries for 32bit or 64bit Windows. The file name pattern is <target>-<host>-<option-version>-<date>; thus, mingw-w64-bin_x86_64-mingw_20100527.zip is a compiler targeting 64bit Windows (mingw-w64) but also running ("host") on 64bit Windows (xx86-64-mingw); you might search for the file in toolchains targetting Win64 (Personal Builds or Automatized Builds).
 - • TDM GCC: MinGW/MinGW-W64 Builds
- MinGW build ("native Windows" build)
 - ∘ Official MinGW builds (only releases), last seen was 4.8.1 (2013-10-11)
 - The MinGW for Win64 project has also binaries for 32bit Windows; e.g. mingw-w32-bin_i686-mingw_<date>.zip runs on and generates binaries for 32bit Windows (cf. above); you might search for the file in Toolchains targetting Win32 (Personal Builds or Automatized Builds).
 - Unofficial build of current development (4.8) source. Download the stest o installer (dated 2013-03-01). It's very easy to use (basically, just click on the OK buttons), but some detailed info is also available. These binaries work or the or
- OTDM GCC: MinGW/MinGW-W64 Builds
- MinGW 32/64bit builds by www.Equation.com (builds were announced at comp.lang.fortran; note equation.com is not affiliated with any MinGW or GCC developer. Use at your own risk)
- Cygwin
 - ∘ Official Cygwin builds (x86 packages, x86_64 packages); last seen (2013-11-09) was 4.8.2

MacOS

The gfortran maintainers offer nice Apple-style installers for:

Step 2: Download MA28 and MC19

- 2.1 Create a new folder "MA28" as working directory.
- 2.2 Go to: <u>http://www.hsl.rl.ac.uk/</u>.
 - 2.2.1 Click "HSL Archive" on the left column, see figure below.

ĒC

e

- 2.2.2 Scroll down on the Archive page to "LINEAR ALGEBRA".
- 2.2.3 Click on "Source" of MA28 and MC19, respectively.

HSL Archive - Library Cata ×		- 🗇 🗙
← → C ↑ www.hsl.rl.ac.uk/archive/		☆ 🤱 🏠 💋 🔳
🔛 Apps 🧰 高中英语 🏠 wD 🗀 高中中文 🧰 XFINITY		C Other bookmarks
	LINEAR PROGRAMMING	
	LA: Linear programming, i.e. minimization of a linear function subject to linear constraints	
	LA01 [PDF] [Source] Linear programming with the revised simplex method	
	LA02 [PDF] [Source] Find a feasible point to a set of linear constraints	
	LINEAR ALGEBRA	
	MA Solution of linear equations, also inverses and determinants	
	MA01 [PDF] [Source] Solves with one or more RHS, simple Gaussian elimination	
	MA08 [PDF] [Source] Form the normal equations for linear least squares	
	MA09 [PDF] [Source] Solve linear least squares using normal equations	
	MA10 [PDF] [Source] Solve symmetric positive definite systems using Cholesky	
	MA11 [PDF] [Source] Solve an overdetermined system in the minimax sense	
	MA12 [PDF] [Source] Solves an upper Hessenberg system using Gaussian elimination	
	MA19 [PDF] [Source] Minimax solution of a system subject to simple bounds	
	MA20 [PDF] [Source] Solves an overdetermined system in the L1 sense	
	MA21 [PDF] [Source] Solution, inversion, determinant, scaling and iterative refinement	
	MA22 [PDF] [Source] As MA21 but for symmetric positive definite systems	
	MA24 [PDF] [Source] As MA21 but for Hermitian positive definite systems	
	MA25 [PDF] [Source] Minimax solution to a system subject to simple bounds	
	MA26 [PDF] [Source] Solve symmetric positive-definite tridiagonal system, Cholesky	
	MA27 [PDF1 [Source] Solve sparse symmetric system, not necessarily positive definite	
	MA28 [P(F) [Source] Factorize and solve sparse system of linear equations	
	MA29 [PDF] Source Factorize and solve symmetric system of linear equations	
	MA30 [PDF] [Source] Perform LU decomposition of a sparse matrix	
	MA32 [PDF] [Source] Solve sparse system using frontal method	
	MA33 [PDF] [Source] Perform LU decomposition of a sparse, possibly rectangular matrix	
	MA35 [PDF] [Source] Solve a band structured system of linear equations	
	MA36 [PDF] [Source] Solve symmetric positive definite band system	
	MA37 [PDF] [Source] Solve a sparse system, symmetric or nearly symmetric	
	MA47 [PDF] [Source] Solve sparse symmetric indefinite system of linear equations	
	MB: Inverses of matrices, also determinants, adjoints and generalized inverses	
	MB01 IPDELISource Inverse of a real matrix using Gaussian elimination	

📖 🔺 🛍 📶 🕩 🚳

4/2/2014

- 2.2.4 Check "Personal License" .

- 2.2.5 Fill in the information at the bottom of the webpage, click "Accept".

C 前 ① www.hsl.rl.ac.uk/download/MA28/1.0.0/a/	- 🗆 📉
Apps 高中英语 D wD 高中中文 C XFINITY accordingly the Contracts (Rights of Third parties) Act 1999 shall not apply to this Agreement. 7.9 This agreement shall be interpreted and construed in accordance with the laws of England and Wales. The English Courts will have exclusive jurisdiction to deal with any dispute which has arisen or may arise out of or in connection with this Agreement, however STFC may enforce the Licensee's obligation of confidence in the courts of any jurisdiction having competence to issue an injunction directly enforceable against the Licensee. Please fill in the following information completely. Your application may be rejected in you do not. August you Name Q WANG Email Company	☆ 🌮 🙆 ≡
accordingly the Contracts (Rights of Third parties) Act 1999 shall not apply to this Agreement. 7.9 This agreement shall be interpreted and construed in accordance with the laws of England and Wales. The English Courts will have exclusive jurisdiction to deal with any dispute which has arisen or may arise out of or in connection with this Agreement, however STFC may enforce the Licensee's obligation of confidence in the courts of any jurisdiction having competence to issue an injunction directly enforceable against the Licensee. Please fill in the following information completely. Your application may be rejected in you do not. About you Name QI WANG Email Company	📋 Other bookmarks
Domain Mathematics City	
	A J 9, 📾 🖢 🗘 🤇

- Step 2: Download MA28 and MC19 (continued)
 - 2.2.7 You will receive a personalised download link in the email you provided in the previous step in few minutes. Click the link to download the zip file to the working folder "..\MA28" created in the Step 2.1.
 - 2.2.8 Unzip these two files, you will have two folders, "mc19-1.0.0" and "ma28-1.0.0".
 - 2.2.9 Copy "mc19d.f" from ..\MA28\mc19-1.0.0\src to ..\MA28 (the working folder), rename it as "mc19.f".
 - 2.2.10 Copy "ma28d.f" from ..\MA28\ma28-1.0.0\src to ..\MA28 (the working folder), rename it as "ma28.f".
 - 2.2.11 Copy "ddeps.f" from ..\MA28\mc19-1.0.0\src to ..\MA28 (the working folder), rename it as "ddep.f".
 - 2.2.12 Copy "MakeMA28" from ..\GEBT4 (your download package from analyswift.com) to ..\MA28 (the working folder).
- 2.3 Now you have all the files needed for compiling MA28.dll. The working folder "..\MA28" should look like this (see figure on the next slide):

- 2.3.1 Working directory "..\MA28".

🖟 l ⊋ 🚺 🗢 l			MA	428				- 0 ×
File Home Share	View							~ ()
	omputer → Windows (C:) → Q	i_Research → MA28			~	Ç	Search MA28	Q
🔆 Favorites	Name	Date modified	Туре	Size				
📃 Desktop	퉬 ma28-1.0.0	4/2/2014 8:35 PM	File folder					
🗼 Downloads	퉬 mc19-1.0.0	4/2/2014 8:34 PM	File folder					
🖳 Recent places	ddep.f	8/18/2011 2:37 AM	F File	94 KB				
\land SkyDrive	ma28.f	8/18/2011 2:37 AM	F File	41 KB				
	🌗 ma28-1.0.0	4/2/2014 8:35 PM	Compressed (zipp	210 KB				
🥞 Libraries	MakeMA28	3/7/2011 12:01 PM	File	1 KB				
Documents	mc19.f	8/18/2011 2:41 AM	F File	5 KB				
🎝 Music	🌗 mc19-1.0.0	4/2/2014 8:34 PM	Compressed (zipp	103 KB				
Pictures	🖭 Tutorial	4/3/2014 12:02 AM	Microsoft Office P	844 KB				
🛃 Videos								
🤣 Homegroup								
🖳 Computer								
🏭 Windows (C:)								
🛐 BD-ROM Drive (F:) C								
Metwork								
9 items								i== 📼
	🕤 🚯 🔄	<u>Fo</u> 📕 🔤 💽			E		• 🕆 🖬 🗤	ENG 12:03 AM

- 2.3.2 Change variable type in mc19.f

Before compiling MA28.dll, some variables need to be modified in "mc19.f" from "REAL" to "DOUBLE PRECISION". There are totally four changes needed

- Line 8 Change from "REAL" to "DOUBLE PRECISION"
- Line 18 Change from "REAL" to "DOUBLE PRECISION"
- Line 20 Change from "ALOG" to "LOG"
- Line 44 Change from "ALOG" to "LOG", see Figure below (Change 4, Line 44, does not shown)

🖸 C:\Qi_Research\MA28\mc19.f - Notepad++ 🗕 🗖 🔤							- 🗇 🗙		
File Edit Search View Encoding Language Settings Macro Run Plugins Window ?							Х		
i 🕞 🛃									
: 🔚 mc19									
1		C COF	PYRIGHT (c) 1977 AFA Technology.		1		с. с.	OPYRIGHT (c) 1977 AFA Technology.	<u>^</u>
2		C####	##DATE 09 MAR 1989		2		C##	####DATE 09 MAR 1989	
3			SUBROUTINE MC19AD (N.NA.A.IRN.ICN.R.C.W)		3			SUBROUTINE MC19AD(N.NA.A.IRN.ICN.R.C.W)	
4	Т		INTEGER N.NA. IRN (*) . ICN (*)		4	Т		INTEGER N.NA. IRN (*) . ICN (*)	
5			DOUBLE PRECISION A (*)		5			DOUBLE PRECISION A (*)	
6		с	IRN(K) GIVES ROW NUMBER OF ELEMENT IN A(K).		6		с	IRN(K) GIVES ROW NUMBER OF ELEMENT IN A(K).	
7		с	ICN(K) GIVES COL NUMBER OF ELEMENT IN A(K).		7		c.	ICN(K) GIVES COL NUMBER OF ELEMENT IN A(K).	
8			REAL RAI),					DOUBLE PRECISION R(N), C(N), W(N, 5)	
9		С	R(I) IS USED TO RETURN LOG(SCALING FACTOR FOR ROW I).		9		С	R(I) IS USED TO RETURN LOG(SCALING FACTOR FOR ROW I).	
10		с	C(J) IS USED TO RETURN LOG(SCALING FACTOR FOR COL J).	8	10		с	C(J) IS USED TO RETURN LOG(SCALING FACTOR FOR COL J).	
11		с	W(I,1), W(I,2) HOLD ROW, COL NON-ZERO COUNTS.		11		С	W(I,1), W(I,2) HOLD ROW, COL NON-ZERO COUNTS.	
12		с	W(J,3) HOLDS - COL J LOG DURING EXECUTION.		12		С	W(J,3) HOLDS - COL J LOG DURING EXECUTION.	
13		С	W(J,4) HOLDS 2-ITERATION CHANGE IN W(J,3).		13		С	W(J,4) HOLDS 2-ITERATION CHANGE IN W(J,3).	
14		С	W(I,5) IS USED TO SAVE AVERAGE ELEMENT LOG FOR ROW I.		14		С	W(I,5) IS USED TO SAVE AVERAGE ELEMENT LOG FOR ROW I.	
15			INTEGER LP, IFAIL		15			INTEGER LP, IFAIL	
16	6 COMMON/MC19BD/LP, IFAIL 16 COMMON/MC19BD/LP, IFAIL								
17			INTEGER I, I1, I2, ITER, J, K, L, MAXIT		17			INTEGER 1,11,12,ITER, J, K, L, MAXIT	
18	4		REAL P/C1,, x, x, y, x, y,			2	<u> </u>	DOUBLE PRECISION E, E1, EM, Q, Q1, QM, S, S1, SM, SMIN, U, V	
19			EXTERNAL MOIDER		19			EXTERNIAL LOCA	
20		2	INTRINSIC ALOG, DADS	11			A 1	TC LOG, D BS, FLOAT	
21 DATA MAXI1/100/, SMIN/0.1/									
22		C MAX	(IT IS THE MAXIMAL PERMITTED NUMBER OF ITERATIONS		22		СМ	AXIT IS THE MAXIMAL PERMITTED NUMBER OF ITERATIONS	
23		С	SMIN IS USED IN A CONVERGENCE TEST ON (RESIDUAL NORM) **2		23		С	SMIN IS USED IN A CONVERGENCE TEST ON (RESIDUAL NORM) **:	2
24		С			24		С		
25		C CHE	ICK SCALAR DATA		25		c c	HECK SCALAR DATA	
26			IFAIL=1		26			IFAIL=1	
27			IF (N.LT.1) GO TO 230		27			IF (N.LT.1) GO TO 230	
28			IFAIL=2		28			IFAIL=2	
29			IFAIL=0		29			IFAIL=0	
30		С			30		С		
31		C	INITIALISE FOR ACCUMULATION OF SUMS AND PRODUCTS		31		С	INITIALISE FOR ACCUMULATION OF SUMS AND PRODUCTS	
32	F		DO 5 I=1,N		32	F		DO 5 I=1,N	
33			C(1)=0.	v 🗄	33			C(1) = 0.	~
		<i>c</i> 1	v m-n	· · · · · · ·	1 74	474			0 1010
Fortran s	ourc	e file		length : 414	4 lines	: 174		Ln:/ Col:36 Sel:0[0 UNIX ANSI as UTF	-8 INS

e

Step 3: Compile "MA28.dll"

- 3.1 Launch a command window in the working directory "..\MA28".
- 3.2 Type command "make –f MakeMA28" in the command line, click "enter".
- 3.3 A "MA28.dll" file will be generated in your working folder. Copy this "MA28.dll" to "..\GEBT4" folder.

SHSL Archive - Library Cata ×		- 0 ×
← → C ↑ www.hsl.rl.ac.uk/archive/		
11 Apps 🗀 高中英语 🐧 wD 🗀 高中中文 🎦 XFINITY		Other bookmarks
★ Apps ● 高中英语 ● wD ● 高中中文 ● XFINITY C:\Windows C:\Windows C:\Qi_Research\MA28>make -f MakeMA28 gfortran -03 -c ddep.f gfortran -03 -c mc29.f gfortran -03 -c mc29.f gfortran -03 -c mc19.f gfortran -03 -c mc19.f gfortran -03 -shared ddep.o ma28.o gfortran -03 -shared ddep.o ma28.o m C:\Qi_Research\MA28> - - ma28.f ma28.f	LINEAR ALGEBRA \System32\cmd.exe - - inants glts reserved. - - - - 19.0 - M028.4111 - - - 19.0 - M028.4111 - - - - 19.0 - M028.4111 - <th>C Other bookmarks</th>	C Other bookmarks
	MB10 [PDF] [Source] Generalized inverse of a rectangular matrix	
🚹 ma28-1.0.0.zip		Show all downloads ×
		▲ 🛍 🛋 🕩 🚳 8:42 PM

Step 4: Running GEBT

- 4.1 The best way to run GEBT is in the command window. Launch a command window in the "..\GEBT4" folder.
- 4.2 Type "gebt 'input_file_name.dat'" in the command line, then click "enter". In this example, the input file is "Cantilever1.dat", which is included in the download package.

Step 5: Running PostGEBT

- 5.1 Two new files, "Cantilever1.dat.ech" and "Cantilever1.dat.out" for this case, will be generated which showed the analysis information and results, respectively.
- 5.2 Now you can run PostGEBT to visualize the results.