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Abstract

Mechanics of structure genome (MSG) is used to develop an approach

for multiscale structural analysis of textile structures. First, MSG is used to

predict the properties of yarns having realistic geometry. Then, beam and

plate stiffness matrices are predicted based on the yarn and matrix proper-

ties using MSG. These beam and plate stiffness matrices are used to perform

structural analysis of textile beams and plates. The computed global re-

sponses are used to conduct dehomogenization to obtain local stress fields.

The MSG-based global displacement and local stress fields are compared with

those predicted by direct numerical simulation (DNS) to compare accuracy

and computational efficiency. An excellent agreement was observed for both

global displacement and local stress field results, while the computational

cost and modeling effort of MSG-based analysis are significantly lower than

those of DNS.
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1. Introduction

Textile composites have gained technological importance in structural ap-

plications because of their potential benefits. These composites not only pos-

sess the advantages of low weight to in-plane stiffness ratio like unidirectional

composites, but also offer better out-of-plane properties. Two-dimensional

(2D) textile composites such as woven fabric composites (WFCs) and braided

composites exhibit better through-the-thickness properties because of yarn

interlacement. In addition to that, 2D textile composites provide balanced
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in-plane properties, unlike unidirectional composites where one direction is

much stiffer than the other two directions. Three-dimensional (3D) textile

composites are even more beneficial because they have reinforcement in mul-

tiple directions. Therefore, they have higher fracture toughness and impact

resistance as compared to laminated composites which are prone to delami-

nation [1]. Another major advantage of 3D woven composites is to fabricate

structural component preforms directly from the yarns. It enables manufac-

turing of complicated structural parts without using fasteners, thus reduces

the manufacturing costs significantly. An example of such applications is

I-beams made by 3D weaving [2].

Utilization of textile composites in structural applications requires an ac-

curate and efficient structural analysis. A key requirement in the accurate

prediction of structural behavior is to use correct constitutive relation of

textile composites. The elastic properties of textile composites are usually

predicted by a two-step homogenization approach [3, 4]. In the first step,

the effective elastic properties of yarn are obtained from constituent material

properties. A common practice is 3D representative volume element (RVE)

analysis to predict 3D properties of yarn. This approach is computationally

expensive and requires significant modeling efforts particularly when a peri-

odic mesh is necessary for imposing periodic boundary conditions (PBCs).

Furthermore, RVE usually has a cuboidal shape while a realistic modeling

of yarns may require a representation of the entire yarn which has curved

boundary surfaces.

The second homogenization stage usually deals with determining the ef-

fective properties of textile composites from the yarn and matrix properties
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[5]. Many real composite structures are thin or slender structural compo-

nents which might be made by textile composites such as I-beams, skin pan-

els, wing-cover panels, stitched stiffeners etc. Engineers usually use shell or

beam elements to analyze this kind of textile composite structures. However,

there are not many models available to predict the equivalent beam and plate

stiffness for textile composites that can be used directly for the macroscopic

structural analysis.

For beam-like textile structures, [6] proposed a finite element analysis

(FEA) based model to predict the beam stiffness matrix. In this analysis,

they implemented PBCs on the lateral faces of unit cell, while top and bot-

tom surfaces were assumed traction free. They applied three independent

deformations (pure extension, pure bending, and pure shear) to predict the

beam stiffness coefficients. The predicted results for plain weave textile were

compared with the estimated results from a mosaic model, and a good agree-

ment was found.

For plate-like textile structures, some researchers have attempted to pre-

dict plate stiffness matrices using different approaches. Most of these pre-

dictions are based on the classical laminated plate theory (CLPT). For 2D

woven textiles, [7, 8, 9] conducted earlier analytical predictions using CLPT.

In these predictions, 2D woven composites were modeled in series and par-

allel based on the loading direction. [10] proposed a fiber inclination model

based on CLPT to predict equivalent plate stiffness for 3D textile composites,

which agrees reasonably well with experiments for 3D braided composites.

[11] developed another analytical model based on CLPT to determine the

plate stiffness of twill composites. The predicted results compared well with
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experiments. [12] developed a direct FEA based micromechanics model with

the main focus to predict plate stiffness. That model was applied to plain

weave composites and satin weave composites, and the predicted results were

compared with those predicted by a mosaic model and CLPT. Many other

researchers have attempted to predict 3D elastic properties of 2D and 3D tex-

tiles which are based on different assumptions such as iso-strain, iso-stress,

mixed iso-strain and iso-stress. Besides the loss of accuracy due to the associ-

ated assumptions in the derivations of 3D elastic properties, [12] have pointed

out that textile plate stiffness matrices, especially B and D matrices, can-

not be predicted using the homogenized elastic constants and plate thickness

in conjunction with CLPT. Therefore, plate stiffness properties should be

predicted directly in terms of the textile microstructures.

Based on the literature review, there are several issues with the avail-

able models for predicting the beam and plate stiffness matrices. First,

most models are based on some assumptions which might affect the accu-

racy. Some assumptions are made for defining the kinematics, and others

for the yarn path. Second, models are usually applicable to some specific

textile microstructures due to the associated assumptions for describing the

complex microstructure. A unified approach that can handle general textile

microstructures will be of great value for answering design questions related

with different woven architectures. Third, few plate and beam models can

accurately predict the local stress and strain fields which are important for

the failure analysis of textile structures. Therefore, it is the objective of this

paper to use MSG, a formal framework for multiscale constitutive modeling

proposed by Yu [13] to develop an efficient yet accurate multiscale analysis for
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beams and plates made with general textile composites. MSG has the pos-

sibility to predict structural properties in terms of microstructures without

unnecessary scale separation. MSG is based on the principle of minimum in-

formation loss (PMIL) to minimize the information loss between the original

model and the homogenized model. It has already been shown that MSG has

the capability to efficiently and accurately analyze composite beams, com-

posite plates, and other composite structures [14, 15, 16, 17]. It can also be

used to perform the two-step homogenization of textile composites for pre-

dicting effective 3D properties of textile composites [3]. Different from the

previous MSG papers, effective yarn properties will be predicted considering

the realistic cross section shape in this paper. Besides, we will extend MSG

to construct beam models and plate models for textile structures to compute

equivalent beam/plate properties in terms of woven microstructures. Unlike

the plate and beam problems solved in other MSG papers [14, 15, 16, 17],

textile beam and plate problems have some unique features. First, due to the

3D heterogeneity of woven composites, 3D SGs must be used at the macro-

homogenization step. Second, the local material orientations change along

the yarn path in the woven SGs, and the MSG beam and plate models have

been extended to consider this important feature.

The corresponding theory has been implemented in SwiftCompTM, a

general-purpose multiscale constitutive modeling software. It takes the geo-

metric model and material properties of a SG and computes the constitutive

properties for the macroscopic structural analysis in the form of beam stiff-

ness matrix, plate stiffness matrix, or 3D properties. We have also integrated

SwiftComp with TexGen, a powerful geometry model generator for textile
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composites [18]. Various examples are used to demonstrate the application of

the present approach. Both the global displacements and local stresses using

the present approach are compared with direct numerical simulations (DNS)

to evaluate the accuracy and efficiency of MSG-based multiscale structural

analysis of textile composites.

2. MSG for multiscale modeling of textile structures

2.1. MSG-based beam and plate modeling

This section extends MSG to construct beam and plate models for tex-

tile composites. Although MSG can be applied to geometrically nonlinear

and material nonlinear problems, we will only deal with linear elastic behav-

ior governed by the 3D linear elasticity which is formulated in terms of 3D

displacements, ui, strains, εij, stresses, σij, and Hooke’s law. In MSG, we

need to introduce two sets of coordinates including macro-coordinates xi and

micro-coordinates yi. The original structure is described using the macro-

coordinates xi. Depending on the dimensionality of the macroscopic struc-

tural model, some of the macro-coordinates will be eliminated. For beam-like

structures, field measures of a beam model are represented as functions of

x1 defined along the beam reference line, while x2 and x3 are eliminated as

shown in Figure 1c. For plate-like structures, field measures of a plate model

are represented as a function of x1 and x2 defined over the reference surface,

while x3 is eliminated as shown in Figure 2c. We also use micro-coordinates

yi = xi/ε to describe the SG with ε being a small parameter due to the fact

that the microscopic size of the SG is much smaller than the macroscopic size

of the structure. In multiscale structural modeling, a field function of the
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original heterogeneous structure can be generally written as a function of the

macro-coordinates xk which remain in the macroscopic structural model and

the micro-coordinates yj. Following [19], the partial derivative of a function

f(xk, yj) can be expressed as

∂f(xk, yj)

∂xi
=
∂f(xk, yj)

∂xi
|yj=const +

1

ε

∂f(xk, yj)

∂yi
|xk=const ≡ f,i +

1

ε
f|i (1)

2.1.1. MSG-based Euler-Bernoulli beam model

Figure 1. Beam SG and 1D beam analysis for a beam-like textile structure: a) 3D textile

structure; b) 3D SG; c) 1D beam elements

To derive the Euler-Bernoulli beam model using MSG, we need to first

express the 3D displacement field of the original structure in terms of that

of the Euler-Bernoulli beam model [13]:

u1(x1, y1, y2, y3) = u1(x1)− εy2u′2(x1)− εy3u′3(x1) + εw1(x1, y1, y2, y3)

u2(x1, y1, y2, y3) = u2(x1)− εy3Φ1(x1) + εw2(x1, y1, y2, y3)

u3(x1, y1, y2, y3) = u3(x1) + εy2Φ1(x1) + εw3(x1, y1, y2, y3)

(2)
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where ui and ui denote the displacements of the original 3D heterogeneous

structure and the 1D beam model respectively. Beam displacements are only

functions of x1. Φ1 is the sectional rotation. w1, w2 and w3 are the unknown

fluctuating functions, which are used to describe the differences between the

the homogenized model and the original heterogeneous model in displacement

fields. We can choose the constraints for the unknown fluctuating functions

as [13]

〈wi〉 = 0; 〈w3|2 − w2|3〉 = 0 (3)

where the angle bracket “〈·〉” denotes the integration over the SG, the 3D

volume in Figure 1b. Note Eq. (3) represents four constraints because “i” is

a free index. In this formulation, there are no apriori assumptions about the

kinematics such as the commonly invoked Euler-Bernoulli assumptions. The

introduction of the fluctuating functions enables to describe all the possible

displacements of every material point of a beam-like structure made of textile

composites, which cannot be adequately expressed by the simple kinematics

of the Euler-Bernoulli model.

The infinitesimal strain field in the 3D linear elasticity theory can be

defined as:

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (4)

Plugging Eq. (2) into Eq. (4), and drop the asymptotically smaller terms

based on variational asymptotic method (VAM) [20]. The 3D strain field can
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be expressed as:

ε11 = ε1 + εy3κ2 − εy2κ3 + w1|1

ε22 = w2|2

ε33 = w3|3

2ε12 = w1|2 − εy3κ1 + w2|1

2ε13 = w1|3 + εy2κ1 + w3|1

2ε23 = w2|3 + w3|2

(5)

Here, the strain measures for the beam model are defined as:

ε1 = u′1; κ1 = Φ′1; κ2 = −u′′3; κ3 = u′′2 (6)

where ε1 is the extensional strain, κ1 is the twist rate, κ2 and κ3 are the beam

bending curvatures about the x2 and x3 axes respectively. The (′) denotes

the derivative with respect to x1.

The strain energy density for a beam model can be defined as:

U1D =
1

2
〈σijεij〉 =

1

2
〈Cijklεijεkl〉 (7)

where σij is the stress field which is related to εij according to Hooke’s law.

σij = Cijklεkl (8)

It is noted that Cijkl could be pointwisely varying because of the heterogene-

ity due to fiber, yarn, matrix and continously varying yarn orientations.

In this paper, we focus on the static behavior and the kinetic energy is

neglected. The total potential energy of the original 3D structure can be

defined as:

Π =
1

2

∫ L

0

U1Ddx1 −W (9)
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where W is the work done by external sources. Substitute the 3D strain field

in Eq. (5) into the total potential energy in Eq. (9) and drop small terms

according to the VAM. Minimize potential energy and impose the constraints

in Eq. (3), the fluctuating functions, wi, can be determined. Substitute

the obtained fluctuating functions back into Eq. (5), the 3D strain field

can be expressed in terms of 1D beam strain measures defined in Eq. (6).

Substituting the 3D strain field into Eq. (7), one obtains the 1D beam strain

energy density.

The 1D kinetic variables, commonly called sectional resultants, can be

defined as the conjugates of beam strains:

∂U1D

∂ε1
= F1;

∂U1D

∂κ1
= M1

∂U1D

∂κ2
= M2;

∂U1D

∂κ3
= M3

(10)

The sectional resultants can be related with beam strains through the

beam stiffness matrix as follows:




F1

M1

M2

M3





=




Cb
11 Cb

12 Cb
13 Cb

14

Cb
12 Cb

22 Cb
23 Cb

24

Cb
13 Cb

23 Cb
33 Cb

34

Cb
14 Cb

24 Cb
34 Cb

44








ε1

κ1

κ2

κ3





(11)

Here, the beam stiffness matrix Cb could be a fully populated 4×4 matrix for

the Euler-Bernoulli beam model, and the superscript “b” indicts the stiffness

matrix is for the beam model which is different from the material stiffness

matrix. Note the elements of the beam stiffness matrix cannot be explicit

written as material parameters and geometry parameters such as EA for

conventional beam theory for isotropic homogeneous beams. This stiffness
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matrix can be used as input to conduct the macroscopic beam analysis,

which will compute the beam strain measures {ε1, κ1, κ2, κ3}. The beam

analysis remains the same as those in [14]. For simple beam problems like a

cantilever beam, the beam analysis can be solved using the knowledge from

undergraduate strength of materials, which is given in section 4.1. Plugging

the beam strain measures back into Eq. (5), the local 3D strain field can be

obtained through dehomogenization. Using Hook’s law, the local stress field

can be obtained. The formulas for computing the beam stiffness matrix and

dehomogenization can be found in the Appendix A.

2.1.2. MSG-based Kirchhoff-Love plate model

To derive the Kirchhoff-Love plate model using MSG, the 3D displace-

ment field can be expressed in terms of the 2D displacement variables admit-

ted by the Kirchhoff-Love plate model as [13]:

u1(x1, x2, y1, y2, y3) = u1(x1, x2)− εy3u3,1(x1, x2) + εw1(x1, x2, y1, y2, y3)

u2(x1, x2, y1, y2, y3) = u2(x1, x2)− εy3u3,2(x1, x2) + εw2(x1, x2, y1, y2, y3)

u3(x1, x2, y1, y2, y3) = u3(x1, x2) + εw3(x1, x2, y1, y2, y3)

(12)

where ui and ui denote the displacements of the original 3D heterogeneous

structure and the 2D plate model respectively. Plate displacements are func-

tions of x1 and x2. w1, w2, and w3 are the unknown fluctuating functions. In

this formulation, there are no apriori assumptions about the kinematics such

as the commonly invoked Kirchhoff-Love assumptions. The introduction of

the fluctuating functions enables to describe all the possible displacements

for every material point of a plate-like structure made of textile compos-

ites, which cannot be adequately expressed by the simple kinematics of the
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Kirchhoff-Love model.

Figure 2. SG and 2D analysis for a plate-like textile structure: a) 3D textile structure; b)

3D SG; c) 2D plate elements

Based on Eq. (4), and drop the asymptotically small terms based on

VAM. The 3D strain field can be written as:

ε11 = ε11 + εy3κ11 + w1|1

ε22 = ε22 + εy3κ22 + w2|2

ε33 = w3|3

2ε12 = 2ε12 + 2εy3κ12 + w1|2 + w2|1

2ε13 = w1|3 + w3|1

2ε23 = w2|3 + w3|2

(13)

where the plate strains and curvatures are defined as:

εαβ(x1, x2) =
1

2
(uα,β + uβ,α); καβ(x1, x2) = −u3,αβ (14)
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The total potential energy of the 3D structure can be defined as:

Π =
1

2

∫

s

U2Dds−W (15)

where U2D is the 2D strain energy density defined as:

U2D =
1

2
〈σijεij〉 =

1

2
〈Cijklεijεkl〉 (16)

Following the same procedure as for MSG-based beam model with the

fluctuating functions constrained by:

〈wi〉 = 0 (17)

Drop the small terms according to VAM and minimize the potential energy.

Impose the constraints for fluctuating functions to solve for wi. Substitute

the obtained fluctuating functions back into Eq. (13). The 3D strain field

can be expressed in terms of 2D plate strains and curvatures in Eq. (14).

The 2D kinetic variables called plate stress resultants are defined as:

∂U2D

∂ε11
= N11;

∂U2D

∂2ε12
= N12;

∂U2D

∂ε22
= N22

∂U2D

∂κ11
= M11;

∂U2D

∂2κ12
= M12;

∂U2D

∂κ22
= M22

(18)

We can get the plate constitutive relation to relate the plate stress resul-

tants and strains and curvatures as:




N11

N22

N12

M11

M22

M12





=




A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66








ε11

ε22

2ε12

κ11

κ22

2κ12





(19)
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Here, the 6×6 plate stiffness matrix is composed of the A,B and D matrices

needed for the Kirchhoff-Love plate model. Although we used the same

notation of A,B,D matrices from CLPT, the way to obtain these stiffness

matrices has no relations to that has been used to derive CLPT [13]. The

stiffness matrix can be directly used in the shell elements in finite element

software packages such as Abaqus and Ansys to conduct the macroscopic

plate analysis, which can take a plate stiffness matrix as inputs. Similar

to the MSG beam model, the plate strain measures can be obtained from

structural analysis, and the local strain field can be computed using Eq.

(13). The local stress field can be obtained using Hook’s law. The formulas

for obtaining the plate stiffness matrix and dehomogenization can be found

in the Appendix A.

2.2. MSG-based multiscale modeling framework for textile composites

MSG-based multiscale modeling of textile composite structures can be

divided into three steps: homogenization (microscale and macroscale), struc-

tural analysis and dehomogenization as shown in Figure 3.

2.2.1. Micro-homogenization

The first step in the multiscale modeling of textile composite structures

is to identify SG for yarns. Since yarns exhibit heterogeneity over the cross

section of the yarn and uniformity along the yarn path, they can be modeled

using a 2D SG as shown in Figure 4b. Although the analysis domain is 2D,

the strain energy is still expressed in terms of the 3D strain field. Thus MSG

can compute effective properties by using a 2D domain. The microstructure

of the yarn is usually idealized in the literature as a square pack or hexagonal
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Figure 3. MSG-based modeling framework for textile composites

pack. MSG can also handle a SG for the yarn having multiple fibers with

real cross-sectional shape such as an ellipse. For an elliptical shape, aperiodic

constraints can be imposed which has been demonstrated as an effective way

to consider the non-periodicity feature of a SG [3]. This modeling approach

allows analysts to predict 3D properties of hybrid yarns (with more than one

fiber type) and to study the effect of varied fiber distribution inside the yarn.

Once the yarn properties have been determined, then MSG can be used to

determine the beam stiffness matrix, plate stiffness matrix or 3D properties

in the macro-homogenization step. In this paper, the homogenized yarn

properties are used in Eqs. (7) and (16) to perform macro-homogenization

to compute MSG beam and plate stiffness matrices.
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(a) 2D yarn cross-sectional view (b) 2D yarn SG (c) 3D yarn RVE

Figure 4. Three different yarn models

2.2.2. Macro-homogenization for textile composite beams and plates

How to obtain 3D properties in the macro-homogenization for general

textile composites considering various effects including finite thickness ef-

fects and inter-ply shifts have been presented in [3]. This paper will fo-

cus on how to predict effective beam and plate stiffness matrices in the

macro-homogenization step. At this level, textile composites exhibit het-

erogeneity in three dimensions; therefore, a 3D SG is needed for the macro-

homogenization. Beam SG is the smallest building block of the beam-like

structure; therefore, it should be selected in such a way that it can recon-

struct the entire beam structure by repeating it in the spanwise direction as

shown in Figure 1 (b). For textile plates, SG should be chosen such that it

can reconstruct the entire structure by repeating it in the two in-plane direc-

tions. An example of a plate SG is presented in Figure 2 (b). Once the SG

has been identified, MSG can be used to predict the constitutive relation for

textile beams or plates using the yarn and matrix properties. MSG predicts

this constitutive information in the form of beam stiffness matrix or plate

stiffness matrix (see Eq. (11) and Eq. (19)). The beam and plate stiffness
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matrices can be used as direct inputs for a 1D beam analysis and a 2D plate

analysis, respectively.

2.2.3. Dehomogenization

After performing the structural analysis of textile beam or plate like struc-

tures, MSG-based dehomogenization analysis can be used to recover the lo-

cal fields. MSG based dehomogenization is performed over the SG using the

global displacements and global strains, which are obtained from the struc-

tural analysis. Local strains fields are obtained using Eqs. (5) and (13).

These local strain fields are then used with Hook’s law to predict the local

stresses.

σij = Cijlkεkl (20)

3. Yarn homogenization

3.1. Yarn homogenization with three approaches

Each yarn, inside a textile composite, contains thousands of randomly

packed fibers, which are bonded together through a matrix material. The real

yarn cross sections do not have a definite shape, but are often approximated

as an ellipse. Due to the irregular shape and random fiber distribution inside

the yarn, predicting the yarn properties is a challenge. Therefore, a unit cell,

one fiber surrounded by matrix, is commonly used to predict yarn properties.

Because MSG has the capability to analyze microstructures with arbitrary

shapes, we will use MSG in this section to predict the 3D properties of yarns

having different numbers of fibers and realistic shape to verify the validity of

the unit cell idealization.
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In this section, yarn homogenization is conducted using three different

approaches: i) elliptical yarn model with aperiodic boundary conditions (aP-

BCs), ii) 2D square pack SG model with PBCs, and iii) 3D RVE model with

PBCs. For all models, it is assumed that fibers and matrix are perfectly

bonded. These models are presented in Figure 4. The constituent properties

(carbon fiber (T-300) and epoxy resin-3601) are kept identical across three

models, which are taken from [21]. The constituent properties are presented

in Table 1.

Table 1. Mechanical properties of the constituents for epoxy 3601/carbon T-300 plain

woven composite [21]

Elastic constant Matrix Fiber

E1 (GPa) 4.51 208.80

E2 = E3 (GPa) 4.51 43.00

G12 = G13 (GPa) 1.70 7.42

G23 (GPa) 1.70 7.42

ν12 = ν13 0.38 0.20

ν23 0.38 0.50

The first homogenization approach deals with modeling yarns with ellip-

tical cross sections. Yarns having different numbers of fibers were modeled

using 2D SGs in SwiftCompTM. Nine models having different number of

fibers 2, 6, 12, 24, 47, 100 200, 300 and 400 were modeled for homogenization.

The minor axis and major axis of ellipse were 8 units × 3.978 units, and were

kept the same across all models. Fiber diameter was changed to maintain

fiber volume ratio equal to 60%. Each model was discretized using mixed

elements (3-noded triangular elements and 4-noded quadrilateral elements).
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The mesh size was 0.025 unit for each model, and then homogenization was

conducted by applying aPBCs.

The second MSG-based yarn homogenization approach deals with mod-

eling a 2D SG as shown in Figure 4b. Fiber volume fraction and constituent

properties were exactly the same as in the elliptical models. The dimensions

of SG were 1 unit × 1 unit. 2D SG was discretized using 4-noded quadrilat-

eral elements. After meshing, homogenization was carried out by imposing

PBCs.

The third approach is 3D RVE analysis of yarn, which was conducted in

the commercial software Abaqus 6.13 to compare the elastic constants. The

dimensions of RVE were 1 unit × 1 unit × 0.05 unit as shown in Figure 4c.

The fiber volume ratio and constituent properties were kept the same as in

the last two approaches. RVE was discretized using eight-noded hexahedral

elements. The mesh size was kept the same in the planar directions as for

the 2D SG. The 3D elastic properties were determined by applying PBCs.

3.2. Results and discussion

All nine elastic constants were plotted on log (number of fibers) - linear

(elastic constants) scale. From Figure 5a, it can be seen that increasing

number of fibers has almost negligible impact on the longitudinal elastic

modulus (E1). This agrees with the earlier finding that fiber distribution has

least impact on the longitudinal elastic modulus [22]. However, a different

trend was observed for transverse moduli (E2 and E3). Transverse moduli

values were lower for elliptical models having low number of fibers than the

values predicted by 3D RVE and 2D SG models. But, as the number of fibers

was increased in the elliptical model, the transverse moduli values increase
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towards 3D RVE and 2D SG models-based values as shown in Figure 5b.

After modeling 47 fibers in the elliptical model, values of E2 was converged

to that of 3D RVE and 2D SG. However, the values of elliptical model-based

E3 approached to those of 3D RVE and 2D SG after modeling 400 fibers in

the elliptical cross section. This implies E2 converges faster than E3 in this

case because there are more fibers along the y2 direction.

(a) E1 (b) E2 and E3

(c) ν12 and ν13 (d) ν23

Figure 5c and 5d present the change in Poisson’s ratios (ν12, ν13 and ν23)

as the number of fibers is increased in the elliptical yarn model. ν12 and

ν13 remains almost insensitive when the number of fibers is increased in the
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(e) G12 and G13 (f) G23

Figure 5. Predicted elastic constants

elliptical yarn model. However, the values of ν23 changes as the number of

fibers is increased. After modeling 400 fibers in the elliptical cross section,

the values of ν23 approached to those of 2D SG and 3D RVE.

Figure 5e and 5f plots the shear moduli (G12, G13 and G23) predicted

by 3 three different models. The effect of number of fibers, in the elliptical

model, on the shear moduli was found to be negligible. The shear moduli

values predicted by three models are in good agreement.

Based on the results obtained by three approaches, the results of 2D SG

model show excellent agreement with the results of 3D RVE model. The

results of MSG-based elliptical model approaches to the results of the other

two models with the increased fibers, which means that MSG-based yarn

modeling approach with aPBCs can be used to predict 3D properties of

yarns having realistic shapes. This tool can be used to analyze 3D properties

of real yarns having multiple fibers inside yarn cross section. On the other

hand, it also demonstrates that the idealized unit cell model can be used

to predict yarn properties because a real yarn could contain more than 400
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fibers.

4. Textile beam and plate analysis

Four textile beam and plate structures were studied to demonstrate accu-

racy and computational efficiency of MSG-based multiscale structural anal-

ysis developed in this paper. For all models, it was assumed that yarns and

matrix are perfectly bonded. Further, interface effects at the layer interface

were not considered. MSG-based approach for analyzing textile structures

follows three steps: homogenization, structural analysis and dehomogeniza-

tion. The homogenization analyses were implemented in TexGen4SC which

can be freely executed on cdmHUB at https://cdmhub.org/tools/texgen4sc.

Beam structural analyses were carried out analytically and plate structural

analyses were performed using STRI65 element in Abaqus 6.13 with the plate

stiffness matrix computed by SwiftCompTM. Both the deflection and local

stresses were compared with DNS results.

Deflections and stresses were also predicted using the homogenized 3D

material properties, denoted as homogenized approach. For the homogenized

approach, the effective material properties were expressed in terms of 6 by 6

material stiffness matrix given in Eq. (21), which was predicted using MSG
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for a 3D solid model.




σ11

σ22

σ33

σ23

σ13

σ12





=




c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66








ε11

ε22

ε33

2ε23

2ε13

2ε12





(21)

Although MSG solid model can give accurate predictions for the effective

3D properties of textile composites, but it is not an accurate approach for

analyzing slender or thin structures with beam and plate elements. Despite

being an inaccurate approach, it is still commonly used in industry to perform

textile beam and plate structural analysis using homogenized material prop-

erties. We will demonstrate through examples that homogenized approach

could cause significant loss of accuracy compared to the MSG beam and plate

modelling approach. For beam modeling using the homogenized approach,

the material stiffness matrix in Eq. (21) was first input into Abaqus 6.13,

then the beam structural analysis using Abaqus is carried out. Since it is

difficult to use the beam structural responses for MSG solid dehomogeniza-

tion, only the stresses at macro-structural level were used to compare with

the stresses in other two approaches (MSG and DNS). In other words, be-

cause only σ11 in the Abaqus beam analysis, only this stress component was

compared with the σ11 of other two approaches for beam examples. For plate

modeling using the homogenized approach, the material stiffness matrix in

Eq. (21) is assigned to the shell elements in Abaqus 6.13 to perform plate

structural analysis. Like in beam structural analysis using the homogenized
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approach, only the stresses at marco-structural level were compared with the

stresses in the other two approaches.

For MSG and DNS, only the significant stress components are compared

for each example as the other stress components are very small compared

to the significant ones. The yarn and matrix properties used in these anal-

yses are presented in Table 2. The matrix properties were taken from [21].

The yarn properties were predicted by 2D SG models from fiber and matrix

properties, which have been discussed in the previous section.

Table 2. Predicted elastic constants of real yarn

Parameter Matrix Yarn

E1 (GPa) 4.51 126.91

E2 = E3 (GPa) 4.51 16.49

G12 = G13 (GPa) 1.70 3.72

G23 (GPa) 1.70 3.22

ν12 = ν13 0.38 0.26

ν23 0.38 0.44

4.1. Analytical solutions for beam responses using MSG beam model

The beam structural responses are solved analytically based on the MSG

beam model. The reversed form of Eq. (11) is




ε1

κ1

κ2

κ3





=




Sb11 Sb12 Sb13 Sb14

Sb12 Sb22 Sb23 Sb24

Sb13 Sb23 Sb33 Sb34

Sb14 Sb24 Sb34 Sb44








F1

M1

M2

M3





(22)

It is obvious that the Sb matrix in the above equation has the relation with

the Cb matrix in Eq. (11) as Sb = Cb−1
. For a beam problem, the beam
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stress resultants can be calculated based on the external loading using the

knowledge of undergraduate strength of materials. For example, the stress

resultants for a cantilever beam subjected to a uniform pressure along nega-

tive x3 direction can be obtained as M2 = 1
2
qx21 − qLx1 + 1

2
qL2 with F1,M1

and M3 are zeros. q is the uniform pressure and L is the length of the beam.

Based on MSG beam model, the beam stiffness matrix has been computed

as well as its inversed form in Eq. (22). Then, the beam strain measures

can be obtained as {ε1 κ1 κ2 κ3} =
{
Sb13M2 Sb23M2 Sb33M2 Sb34M2

}
.

If the coupling terms Sb13, S
b
23 and Sb34 are zeros, the strain measures be-

come κ2 = Sb33M2 which is just a function of x1. Using Eq. (6) and the

boundary conditions such as ūi(0) = 0, Φ1(0) = 0 and ū′2(0) = ū′3(0) = 0

for the cantilever beam, the beam displacements ūi and Φ1 can be computed

analytically.

4.2. Plain weave textile beam

This example demonstrates the capability of the present theory for mul-

tiscale structural analysis of plain weave textile beam-like structure. This

structure consists of two plies of plain weave composite. The length, width

and thickness of this structure are 3 mm, 0.3 mm and 0.04 mm respectively.

The first step to conduct the MSG-based analysis is to identify the SG of the

original structure. 3D SG is used for this beam because plain weave compos-

ite has 3D heterogeneity (see Figure 6). The dimensions of the SG are 0.3

mm × 0.3 mm × 0.04 mm. The SG was discretized using 86,400 20-noded

brick elements.

The non-zero components in the beam stiffness matrix are: Cb
11 = 4.49×

102 N, Cb
22 = 1.58× 10−2 N ·mm2, Cb

33 = 5.64× 10−2 N ·mm2, Cb
44 = 2.96 N ·
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Figure 6. Plain weave composite structure and its SG: a) 3D plain weave structure; b)

3D beam SG

mm2, Cb
14 = Cb

41 = 2.52 × 10−2 N · mm, which were used as inputs for the

macroscopic structural analysis. Fixed-free boundary conditions, and the

uniform distributed load of magnitude 3 × 10−3 N/mm along negative x3

direction were used in the computation of the structural responses. In this

beam analysis, dehomogenization was performed using the beam strain and

curvatures (Eq. (6)) at x1 = 1.575 mm.

To evaluate the efficiency and accuracy of MSG-based multiscale analysis,

DNS of the original plain weave beam-like structure was conducted in Abaqus

6.13. The structure was discretized using 864,000 20-noded brick elements.

For the homogenized approach, the non-zero components of the 6 ×
6 material stiffness matrix are: c11 = 4.42 × 104 N/mm2, c22 = 4.42 ×
104 N/mm2, c33 = 1.38× 104 N/mm2, c44 = 2.49× 103 N/mm2, c55 = 2.49×
103 N/mm2, c66 = 2.73 × 103 N/mm2, c12 = c21 = 7.87 × 103 N/mm2, c13 =

c31 = 6.81×103 N/mm2, c23 = c32 = 6.81×103 N/mm2. Then the structure is
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modelled as a beam made of this homogenized material. It has length 3 mm

and cross section with dimensions 0.3 mm × 0.04 mm. Boundary conditions

and load were kept the same as for MSG-based approach.

The displacements for three approaches (MSG, DNS and homogenized)

are presented in Figure 7. The results show that MSG-based beam modelling

approach predicted beam deflection, u3, with almost the same accuracy as

DNS. However, the homogenized approach predicted smaller beam deflection

as compared to MSG and DNS.

0 0.5 1 1.5 2 2.5 3
x1 (mm)

-0.5

-0.4

-0.3

-0.2

-0.1

0

u
3
(m

m
)

MSG DNS Homogenized

Figure 7. Deflection, u3, in plain weave beam along x1 direction

Figure 8 presents the local stress distribution of σ11, σ22 and σ33 along

the thickness direction. This distribution was taken at x1 = 1.575 mm,

x2 = 0.075 mm, x3 = 0 − 0.04 mm. The stress distribution plots show

that MSG predictions match excellently with those of DNS. MSG accurately

predicted stress distribution through the thickness. In addition to that, the

discontinuities in stresses were also captured accurately by MSG. However,

the homogenized approach could predict only σ11, and σ22 and σ33 cannot

be recovered from the Abaqus beam analysis. The predicted σ11 has linear
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stress distribution throughout the thickness which is very different from the

exact stress distributions in the original structure predicted by DNS.
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Figure 8. Stress distribution in plain weave beam through the thickness based on

different models

In terms of the computing efficiency, MSG-based beam analysis took ap-

proximately two hours and four minutes with one CPU for the entire analysis.

However, DNS took seven hours and 44 minutes with 28 CPUs. Based on

this analysis, it is clear that MSG can accurately and efficiently analyze plain
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weave beam-like textile structures.

4.3. 3D orthogonal textile beam

A 3D orthogonal textile beam structure with more complicated textile

architecture is studied in this example. The length, width, and thickness of

the original structure are 3 mm, 0.45 mm and 0.07 mm respectively. The

original structure and its 3D SG is shown in Figure 9. The dimensions of

the SG are 0.3 mm × 0.45 mm × 0.07 mm. SG was discretized using 72,000

20-noded brick elements.

Figure 9. 3D orthogonal composite structure and its SG: a) 3D orthogonal structure; b)

3D beam SG

The non-zero components in the beam stiffness matrix are: Cb
11 = 7.12×

102 N, Cb
22 = 9.91 × 10−2 N ·mm2, Cb

33 = 1.52 × 10−1 N ·mm2, Cb
44 = 1.11 ×

101 N ·mm2, Cb
14 = Cb

41 = 1.53× 101 N ·mm. Fixed-free boundary conditions
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and 4.5 × 10−3 N/mm load along negative x3 direction were used in the

computation of the structural responses. The beam strain and curvatures

at x1 = 1.575 mm, were used as inputs for MSG-based dehomogenization

analysis and the local fields of the original structure were recovered.

To compare the MSG-based results, DNS of the original 3D orthogonal

beam-like structure, presented in Figure 9, was conducted in Abaqus 6.13.

3D orthogonal structure was meshed using 720,000 20-noded brick elements.

The boundary conditions and loading were kept the same as for the plain

weave beam structure in the previous example.

For the homogenized approach, the non-zero components of the 6 ×
6 material stiffness matrix are: c11 = 2.69 × 104 N/mm2, c22 = 4.34 ×
104 N/mm2, c33 = 1.17× 104 N/mm2, c44 = 2.18× 103 N/mm2, c55 = 2.20×
103 N/mm2, c66 = 2.42 × 103 N/mm2, c12 = c21 = 6.08 × 103 N/mm2, c13 =

c31 = 6.32 × 103 N/mm2, c23 = c32 = 6.00 × 103 N/mm2. The structure was

modelled as a beam made of this homogenized material. It has length 3 mm

and cross section with dimensions 0.45 mm × 0.07 mm. Boundary conditions

and load were kept the same as for MSG-based approach.

The displacement field, u3, predicted by MSG, DNS, and homogenized

approach is shown in Figure 10. It can be seen that there is an excellent

agreement between MSG and DNS predictions for displacement, u3. How-

ever, there was a significant loss of accuracy when the displacement field was

predicted using the homogenized approach.

Figure 11 presents the local stress distribution of σ11 and σ22 along the

thickness direction. The stress distribution was plotted at x1 = 1.575 mm,

x2 = 0.075 mm, x3 = 0− 0.07 mm. The plots show that there is an excellent
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Figure 10. Deflection, u3, in 3D orthogonal beam along x1 direction
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Figure 11. Stress distribution in 3D orthogonal beam through the thickness based on

different models

agreement among stress distributions of σ11 and σ22 obtained from MSG and

DNS. Overall, MSG predicted all stress variations and discontinuities along

the thickness direction. However, like for the plain weave beam structure, the

homogenized approach could only capture σ11 with linear stress distribution.

The homogenized approach could not capture the discontinuities and shifts in

the local stress fields of σ11 and the max stresses predicted are very different
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from the exact stresses in the original structure predicted by DNS.

In terms of efficiency, DNS took five hours and 56 minutes with 20 CPUs

to complete the analysis. For MSG, it took one hour and 58 minutes with

one CPU for the entire analysis.

4.4. Plain weave composite plate

In this example, multiscale structural analysis of a plain weave plate-

like textile structure is performed using MSG and compared with other ap-

proaches. This structure consists of two plies of plain weave fabric having

thickness equal to 0.02 mm each. The length and width are equal to 2.1 mm.

The 3D SG for this plain weave plate-like textile structure is the same as for

the plain weave beam-like textile structure. 3D SG and original the plain

weave structure are shown in Figure 12.

Figure 12. Plain weave composite plate and its SG: a) 3D plain weave structure; b) 3D

plate SG
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The non-zero components of the plate stiffness matrix A11 = 1.57 ×
103 N/mm, A22 = 1.57 × 103 N/mm, A12 = A21 = 2.25 × 102 N/mm, A66 =

1.09×102 N/mm, D11 = 1.89×10−1 N ·mm, D22 = 1.89×10−1 N ·mm, D12 =

D21 = 1.45×10−2 N ·mm, D66 = 1.43×10−2 N ·mm were used as an input for

the 2D macroscopic plate analysis. The length and width of the 2D model

were equal to 2.1 mm each. Plate was clamped at one end and the other

end was free. The uniform pressure of magnitude 10−2 MPa along negative

x3 direction was applied. This analysis outputs global plate strains and cur-

vatures (Eq. (14)), which were used as inputs to perform the MSG-based

dehomogenization analysis to recover local stress and strain fields.

MSG-based global displacement and local stress fields of plain weave

plate-like structure were compared with those of DNS to verify the accu-

racy of MSG-based approach. DNS of the original structure was conducted

in Abaqus 6.13. This 3D structure was discretized using 4,233,600 20-noded

brick elements. Fixed-free boundary conditions were applied to the 3D textile

structure.

Like for the previous two examples, global displacement and stress fields

for the plain weave plate-like structure were also predicted by using the ho-

mogenized approach. Material stiffness matrix for this case was the same as

for the plain weave textile-beam like structure. Plate was modelled in 2D

space having length and width equal to 2.1 mm×2.1 mm each. Shell thick-

ness was kept to be 0.04 mm. Boundary conditions and mesh was kept the

same as for MSG-based approach for the plain weave plate-like structure.

The displacement, u3, results for three approaches are presented in Fig-

ure 13. MSG-based predicted displacement field matched exactly with that
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of DNS. However, homogenized approach predicted smaller values for the

displacement field as compared to the MSG and DNS approach.

The stress distributions of σ11, σ22, and σ33 along the thickness direction

are presented in Figure 14. This distribution was plotted through the thick-

ness at x1 = 1.275 mm, x2 = 1.275 mm, x3 = 0−0.04 mm. MSG-based stress

distributions match exactly with those of DNS. MSG not only captured the

variations in stresses, but it also predicts the discontinuities in the stresses

accurately. It is clear that MSG accurately predicts stress distributions of

σ11, σ22, and σ33 in plain weave plate-like structures. However, the homog-

enized approach captured σ11 with linear distribution through the thickness

which is very different from the actual stress distributions in the original

heterogeneous structures. Additionally, homogenized approach predicted σ22

negligibly small as compared to the ones predicted by MSG and DNS and

the homogenized approach cannot predict a nonzero value for σ33.
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Figure 13. Deflection, u3, in plain weave plate along x1 direction

In terms of the computing efficiency, MSG-based analysis took only two

hours and 16 minutes with one CPU for the entire analysis. However, DNS
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Figure 14. Stress distribution in plain weave plate through the thickness based on

different models

took eight hours and four minutes with 60 CPUs.

4.5. 3D orthogonal textile plate

In this example, multiscale modeling of a 3D orthogonal plate-like struc-

ture was conducted using MSG, DNS and the homogenized approach. The

length, width, and thickness of the original structure were 3 mm, 3.6 mm and

0.07 mm respectively. 3D SG was the same as for 3D orthogonal beam-like
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textile structures as shown in Figure 15.

Figure 15. 3D orthogonal composite structure and its SG: a) 3D Orthogonal structure;

b) 3D plate SG

The 2D plate analysis was conducted in Abaqus 6.13. Then non-zero

terms of MSG predicted plate stiffness matrix A11 = 1.60×103 N/mm, A22 =

2.82×103 N/mm, A12 = A21 = 1.95×102 N/mm, A66 = 1.69×102 N/mm, D11 =

3.49× 10−1 N ·mm, D22 = 8.08× 10−1 N ·mm, D12 = D21 = 6.93× 10−2 N ·
mm, D66 = 6.12× 10−2 N ·mm were used as an input. Fixed-free boundary

conditions were applied to the plate, and the plate was subjected to a uni-

form pressure of 10−2 MPa along negative x3 direction. This analysis outputs

global responses (the strains and curvatures), which were extracted at x1 =

1.575 mm, x2 = 1.875 mm point. The responses were used as inputs for the

dehomogenization analysis.
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DNS of the original 3D orthogonal structure was conducted in Abaqus

6.13. This 3D structure was discretized using 5,760,000 20-noded brick el-

ements. The boundary conditions and load were kept the same as for the

plain weave plate-like textile structure.

Global displacement and local stess field results for the 3D orthogonal

structure were also predicted by using the homogenized approach. Effective

stiffness matrix was the same as for the 3D orthogonal textile-beam like

structure. Plate was modelled as 2D plane having length and width equal to

3 mm × 3.6 mm each. Plate thickness was kept equal to 0.07 mm. Boundary

conditions, loading and mesh was kept the same as for MSG-based approach

for the 3D orthogonal plate-like structure.

The displacement, u3, results for three approaches are presented in Figure

16. MSG-based displacement field match exactly with that of DNS. How-

ever, there was significant loss of accuracy when the displacement field was

predicted using the homogenized approach.
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Figure 16. Deflection, u3, in 3D orthogonal plate along x1 direction

Figure 17 presents the stress distribution of σ11 and σ22 for MSG and
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DNS. This distribution was taken at x1 = 1.575 mm, x2 = 1.875 mm, x3

= 0 − 0.07 mm. MSG captured in-plane normal stress components (σ11,

σ22) with the same accuracy as DNS. Based on the results, it is clear that

MSG is fully capable of predicting the deflection and stress distributions of

complicated plate-like 3D orthogonal textile structures. Like in the previous

example, the homogenized approach could not accurately capture the local

stress fields.
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Figure 17. Stress distribution in 3D orthogonal plate through the thickness based on

different models

In terms of efficiency, MSG-based analysis took approximately two hours

and three minutes with one CPU for the entire analysis. However, DNS took

twenty hours and two minutes with 80 CPUs.

4.6. Discussion

Based on the beam and plate examples shown in this section, it is clear

that MSG beam and plate models can predict the global structural displace-

ments and local stress fields with almost the same accuracy as 3D DNS
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approach, while the computing time for MSG beam and plate models is sig-

nificantly lower than that for DNS. In other words, MSG beam and plate

model provides an accurate and efficient way to analyze textile beam and

plate structures. Because different types of textile composites can be dis-

cretized using finite element meshes and then analyzed using the MSG-based

multiscale modeling framework, MSG beam and plate models are not re-

stricted to a certain type of textiles, they can be used to analyze general

textile composites having simple or complicated architectures.

From the deflection results, it is clear that homogenized approach pre-

dicted smaller deflection values than the other two approaches. If a structure

is designed based on the homogenized approach, it may be unsafe because

the real deflection will be larger than the one predicted by the homogenized

approach. The stresses obtained using homogenized approach are taken at

macro-structural level. Usually, it is difficult to recover the local stresses in

the MSG solid model as well as in the RVE with the structural responses

coming from beam and plate elements. Therefore, if the stresses at macro-

structural level are taken as a design parameter, there will be a great loss of

accuracy as shown in the above examples. However, MSG beam and plate

models can easily recover the local fields with all the stress components based

on the structural responses using common beam and plate elements available

in any commercial FEA software. It is important to note that the inaccurate

results computed by the homogenized approach using the MSG solid model

doesn’t mean the MSG solid model is not accurate. The main reason is that

the beam and plate structures usually doesn’t meet the periodicity require-

ments in all directions, while the effective properties used in homogenized
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properties are obtained for the structures featuring 3D periodicity. In other

words, if a structure has 3D periodicity and needs to be modelled using solid

elements, then the MSG solid model should be used in that case.

5. Conclusion

MSG is extended to provide a novel multiscale structural modeling ap-

proach for textile composite structures. This approach combines homogeniza-

tion, structural analysis and dehomogenization, which decouples the original

complex structural analysis to constitutive modeling and macroscopic beam

and plate analysis. For MSG homogenization, yarn homogenization is per-

formed first based on the properties of fiber and matrix. It is demonstrated by

examples that MSG has the capability to predict the homogenized response

of yarns having realistic shapes and many fibers. Plate and beam stiffness

matrices are computed directly in terms of yarn and matrix properties. Based

on these stiffness matrices, 1D beam and 2D plate structural analyses are con-

ducted to predict the global responses. Finally, 3D stress fields are recovered

using MSG-based dehomogenization approach. The global displacements

and local stress distributions are compared with DNS for four different tex-

tile structures (2 textile beams and 2 textile plates). An excellent agreement

among the results was observed. In addition to that, computational costs

of MSG-based approach are significantly lower than DNS. It is also shown

that homogenized approach does not provide accurate prediction of displace-

ment and stress fields for slender and thin textile structures. However, the

homogenized approach will take similar time as the MSG-based beam/plate

analysis. Therefore, it is better to use beam and plate constitutive relations
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to perform beam and plate structural analysis instead of using homogenized

material properties. MSG provides a unified and rigorous way to predict the

beam and plate constitutive relations based on the SG of the textile compos-

ites, which can be directly used in the structural analysis in most commercial

FEA codes. Based on this research work, it can be confidently said that MSG

can be used to perform multiscale structural analysis of textile composites at

much lower computing costs and maintains almost the same accuracy as of

DNS of the original heterogeneous model. This novel approach can be confi-

dently used in designing structures made from complicated textile composites

with much less modeling efforts and computing time than DNS.
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Appendix A. plate and beam stiffness matrix

The 3D strain field for MSG beam and plate models can be expressed in

a unified form

Γ = Γhw + Γεε̄ (A.1)

where Γ = [ε11 ε22 ε33 ε23 ε13 ε12] represents the 3D strain field of the

original structure. Γh is an operator matrix which depends on the dimension-

ality of the SG. Γε is an operator matrix which depends on the macroscopic

structural model. The detailed expressions for the operator matrices can be
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found in [13]. For the beam model, ε̄ is the beam strain measures in Eq. (6).

For the plate model, ε̄ is the plate strain measures in Eq. (14). The strain

energy density can be expressed as

U =
〈

(Γhw + Γεε̄)
T C (Γhw + Γεε̄)

〉
(A.2)

MSG uses a finite element mesh to discrete the analysis domain, and the

fluctuating functions can be expressed using shape functions defined over SG

as

w (xk, yj) = S(yj)V (xk) (A.3)

where V is what we need to solve for as the nodal values for the fluctuating

function based on the discretization. Substituting Eq.(A.3) into Eq. (A.2),

U =
1

2

(
V TEV + 2V TDhεε̄+ ε̄TDεεε̄

)
(A.4)

where

E =
〈
(ΓhS)TC(ΓhS)

〉
, Dhε =

〈
(ΓhS)TCΓε

〉
, Dεε =

〈
ΓTε CΓε

〉
(A.5)

Solving V , we can get the strain energy in the SG as

U =
1

2

(
ε̄T (V T

0 Dhε +Dεε)ε̄
)
≡ ω

2
ε̄T C̄ε̄ (A.6)

where C̄ is the effective stiffness to be used in the macroscopic structural

model and ω is the volume of the SG. For the beam model used in this

paper, C̄ is the 4 × 4 stiffness matrix in Eq. (11). For the plate model used

in this paper, C̄ is the 6 × 6 stiffness matrix in Eq. (19). The effective

stiffness can be used as inputs for the structural analysis to obtain the global

strains ε̄ which can be used in Eq. (A.1) to obtain the local strain field, which

can be further used to obtain the local stress field using Hooke’s law.
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