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Abstract

An explicit unified form of boundary conditions for a periodic representative volume element (RVE) is presented

which satisfies the periodicity conditions, and is suitable for any combination of multiaxial loads. Starting from a simple

2-D example, we demonstrate that the ‘‘homogeneous boundary conditions’’ are not only over-constrained but they

may also violate the boundary traction periodicity conditions. Subsequently, the proposed method is applied to: (a) the

simultaneous prediction of nine elastic constants of a unidirectional laminate by applying multiaxial loads to a cubic

unit cell model; (b) the prediction of in-plane elastic moduli for ½�h�n angle-ply laminates. To facilitate the analysis, a

meso/micro rhombohedral RVE model has been developed for the ½�h�n angle-ply laminates. The results obtained are in

good agreement with the available theoretical and experimental results.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Composite materials are becoming an essential part of present engineered materials because they offer

advantages such as higher specific stiffness and strength, better fatigue strength and improved corrosion-

resistance compared to conventional materials. They are used in various applications ranging from aero-

space structures to sports equipment, electronic packaging, medical tools, and civil engineering structures.

Consequently, prediction of the mechanical properties of the composites has been an active research area

for several decades. Except for the experimental studies, either micro- or macromechanical methods are

used to obtain the overall properties of composites.

Micromechanical method provides overall behavior of the composites from known properties of their
constituents (fiber and matrix) through an analysis of a periodic representative volume element (RVE) or a

unit-cell model (Aboudi, 1991; Nemat-Nasser and Hori, 1993). In the macromechanical approach, on the
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other hand, the heterogeneous structure of the composite is replaced by a homogeneous medium with

anisotropic properties. The advantage of the micromechanical approach is not only the global properties of

the composites but also various mechanisms such as damage initiation and propagation, can be studied

through the analysis (Xia et al., 2000; Ellyin et al., 2002).
There are several micromechanical methods used for the analysis and prediction of the overall behavior

of composite materials. In particular, upper and lower bounds for elastic moduli have been derived using

energy variational principles, and closed-form analytical expressions have been obtained (Hashin and

Shtrikman, 1963; Hashin and Rosen, 1964). Based on an energy balance approach with the aid of elasticity

theory, Whitney and Riley (1966) obtained closed-form analytical expressions for a composite�s elastic

moduli. Unfortunately, the generalization of this method to viscoelastic, elastoplastic and nonlinear

composites is very difficult. Aboudi (1991) has developed a unified micromechanical theory based on the

study of interacting periodic cells, and it was used to predict the overall behavior of composite materials
both for elastic and inelastic constituents. In his work, homogeneous boundary conditions were applied to

the RVE or unit cell models. In fact, this is only valid for those cases in which normal tractions are applied

on the boundaries. For a shear loading case, many researchers, e.g., Needleman and Tvergaard (1993), Sun

and Vaidya (1996), Suquet (1987), among others, have indicated that the �plane-remains-plane� bound-
ary conditions are over-constrained boundary conditions. In the current paper we shall further demon-

strate that they are not only over-constrained boundary conditions but may also violate the stress/strain

periodicity conditions.

The above micromechanical models can be regarded as mechanical or engineering models. A mathe-
matical counterpart to such engineering methods appeared in the 1970s under the general heading of the

�asymptotic homogenization theory�. The fundamentals of this theory can be found, e.g. in Suquet (1987),

Benssousan et al. (1978), Sanchez-Palencia (1980), and Bakhvalov and Panasenko (1984), among others.

Asymptotic homogenization theory has explicitly used periodic boundary conditions in modeling of linear

and nonlinear composite materials. These results have clearly shown that characteristic modes of defor-

mation do not result in plane boundaries after deformation (Suquet, 1987). Guedes and Kikuchi (1991)

discussed the application of finite element method (FEM) to composite problems. Recent applications of

homogenization theory for various aspects of composite analysis are given, for instance, in Raghavan et al.
(2001) and Moorthy and Ghosh (1998).

Hori and Nemat-Nasser (1999) presented a universal inequalities which indicate that the predicted ef-

fective elastic modulus can vary depending on the applied conditions on the boundary oV of a unit cell, and

the homogeneous displacement and homogeneous traction boundary conditions will give the upper and

lower bounds of the effective modulus. Hollister and Kikuchi (1992) have given a very good comparison of

the homogenization theory and the mechanical methods (it is called average field theory in Hori and

Nemat-Nasser (1999)), concluding that the homogenization theory, which uses the periodic boundary

conditions, yields more accurate results. It is shown that the homogenization theory and mechanical
methods can be related to each other and a more applicable hybrid theory was established (Hollister and

Kikuchi, 1992).

FEM has been extensively used in the literature to analyze a periodic unit cell, to determine the me-

chanical properties and damage mechanisms of composites (Adams and Crane, 1984; Aboudi, 1990; Allen

and Boyd, 1993; Bonora et al., 1994; Pindera and Aboudi, 1998). In most cases, the applications are limited

to the unidirectional laminates. A few investigators have also applied the micromechanical analysis to the

cross-ply laminates (laminates contain only 0� and 90� laminae), for which the thermal residual stresses,

crack initiation and propagation, viscoplastic or viscoelastic behaviors have been studied (Xia et al., 2000;
Ellyin et al., 2002; Bigelow, 1993; Chen et al., 2001).

In the present paper the FEM micromechanical analysis method is applied to unidirectional and angle-

ply laminates subject to multiaxial loading conditions. For the latter laminates, special meso/micro rhombo-

hedral RVE models have been developed. Based on general periodicity conditions stated by Suquet (1987),
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an explicit form of boundary conditions suitable for FEM analyses of parallelepiped RVE models subjected

to multiaxial loads is presented. Starting from a simple 2-D example, the results of the present method and

those obtained by applying homogeneous boundary conditions are compared. Subsequently, the FEM

analyses are conducted for two composite RVE models: (1) a unidirectional laminate to predict simulta-
neously all nine elastic constants by applying multiaxial loads; (2) a thick ½�h�n angle-ply laminate to

predict simultaneously the four in-plane elastic moduli by applying biaxial loads. The predicted properties

are compared with available theoretical or experimental results and are found to be in very good agreement.

Although the illustrative analyses presented in the current paper are limited to the elastic range, the basic

relations proposed in this paper are independent of the properties of the constituents of the composite.

2. Representative volume elements for unidirectional and angle-ply laminates

The micromechanical model is set up based on the periodic RVE technique. For the continuous fiber

reinforced composites, it is assumed that fibers are uniformly distributed in the matrix and have the same

radii. Therefore, each unidirectional layer could be represented by a unit cube with a single fiber having the
same fiber volume fraction as the ply, see Fig. 1. Instead of the square layout of fibers reflected by this RVE

model, the square-diagonal or hexagonal RVE models have also been used (Li, 1999).

Fig. 2 indicates the manner in which a RVE is developed for a thick angle-ply ½�h�n laminate. From the

periodicity of the fiber array, we can cut a rhombohedral RVE consisting of two layers, each with a single
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Fig. 1. A representative volume element for a unidirectional laminate.
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Fig. 2. A representative volume element for an [�h] angle-ply laminate.
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fiber in the direction þh and �h, respectively. The angle-ply laminate can thus be seen as a periodical array

of this unit cell.

It should be noted that in Fig. 2, the angle h is measured from X axis (if measured from the Y axis, it will

be 90�� h), therefore this model can also be seen as a RVE for the ½�ð90� hÞ�n laminates. For example, the
RVEs for the ½�30�n laminates and the ½�60�n laminates are the same.

To facilitate the analysis, a skew coordinate system as shown in Fig. 3, is introduced. We denote this

skew coordinate system as O–XsYsZs, with the same origin as that of the orthogonal coordinate system O–
XYZ, and the axes Xs; Ys are parallel to the fiber directions (direction of �h). In this system, the coordinates

and the displacement components are designated as (xs; ys; zs), and (uxs; uys; uzs), respectively. From Fig. 3,

we can obtain the transformation between the two coordinate systems as follows:

xs
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zs
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sin h cos h 0

0 0 sin 2h

2
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Referring to Fig. 2(b), we assume that S is the area of side surface (ABCD), ‘ is the length of the side AB,

h is the height of the RVE (AD), S1 is the area of the cross section (AEFB), the volume of the RVE is V , the
fiber volume fraction is Vf and R is the radius of the fiber. The following relations between these geometric
parameters can be obtained:

h ¼ 2‘ sin 2h

S1 ¼ ‘2 sin 2h

S ¼ 2‘2 sin 2h

V ¼ 2‘3 sin2 2h

R ¼ ‘ sin 2h

ffiffiffiffi
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p

r
ð3Þ
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Fig. 3. The two coordinate systems.
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3. Unified periodic boundary conditions for parallelepipedal RVE under multiaxial loading

Composite materials can be envisaged as a periodical array of the RVEs. Therefore, the periodic

boundary conditions must be applied to the RVE models. This implies that each RVE in the composite has
the same deformation mode and there is no separation or overlap between the neighboring RVEs. As stated

by Suquet (1987), these periodicity conditions on the boundary oV is

ui ¼ eikxk þ u	i ; u	i periodic ð4Þ

In the above eik are the average strains, u	i is the periodic part of the displacement components on the

boundary surfaces and it is generally unknown and is dependent on the applied global loads. A more
explicit form of periodic boundary conditions, suitable for parallelepiped RVE models can be derived from

the above general expression.

For a cubic RVE as shown in Fig. 1, the displacements on a pair of opposite boundary surfaces (with

their normals along the Xj axis) are

ujþi ¼ eikx
jþ
k þ u	i ð5Þ

uj�i ¼ eikx
j�
k þ u	i ð6Þ

where index ‘‘jþ’’ means along the positive Xj direction and ‘‘j�’’ means along the negative Xj direction.

The difference between the above two equations is

ujþi � uj�i ¼ eikðxjþk � xj�k Þ ¼ eikDx
j
k: ð7Þ

For any parallelepiped RVE models Dxjk is constant, therefore the following unified periodic boundary

conditions is obtained:

ujþi ðx; y; zÞ � uj�i ðx; y; zÞ ¼ cji ði; j ¼ 1; 2; 3Þ ð8Þ

The constants, c11, c
2
2 and c33, represent the average stretch or contraction of the RVE model due to the

action of the three normal traction components, whereas the other three pairs of constants, c21 ¼ c12, c
3
1 ¼ c13

and c32 ¼ c23, correspond to the shear deformations due to the three shear traction components. This form of

boundary conditions meets the requirement of displacement periodicity and continuity. It can be seen from
Eq. (8) that although the difference of the displacements for the corresponding points on the two opposite

boundary surfaces are specified, the individual displacement component is still a function of the coordi-

nates, i.e. a plane does not necessarily remain a plane after the deformation. Also since Eq. (8) does not

contain the periodic part of the displacement, which is unknown, it becomes easier to adopt this form in a

finite element procedure, instead of applying (4) directly as the boundary conditions.

It is assumed that the average mechanical properties of a RVE are equal to the average properties of the

particular composite laminate. The average stresses and strains in a RVE are defined by

eij ¼
1

V

Z
V

eij dV ð9Þ

�rrij ¼
1

V

Z
V

rij dV ð10Þ

where V is the volume of the periodic representative volume element.

The strain energies predicted by the different boundary conditions must satisfy the following inequality if
the average strain eij for each case is assumed to be the same (Suquet, 1987; Hori and Nemat-Nasser, 1999;

Hollister and Kikuchi, 1992):
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UR
6UP

6UE ð11Þ
where UR, UP , UE are the strain energy predicted by homogeneous traction boundary conditions, periodic

boundary conditions, and homogeneous displacement boundary conditions, respectively. It is clear that the

homogeneous displacement boundary conditions overestimate the effective moduli whereas the homo-
geneous traction boundary conditions underestimate the effective moduli. It should also be pointed out

that the application of the homogeneous displacement boundary conditions generally would not guarantee

to produce a periodic boundary traction. Similarly, the application of the homogeneous traction boundary

conditions would not guarantee the displacement periodicity at the boundaries.

The calculation of average strain and stress can be simplified by using Gauss�s theorem. The average

strain in the RVE can be expressed as an integration around the boundary surfaces (Aboudi, 1991; Sun and

Vaidya, 1996; Suquet, 1987)

eij ¼
1

V

Z
V

eij dV ¼ 1

2V

Z
S
ðuinj þ ujniÞdS ð12Þ

Since all the boundary surfaces in Fig. 1 are perpendicular to one of the coordinate axis, the unit normal

vector n has only one non-zero component on these surfaces with a value of unity. Therefore, using the

symbols defined in Eq. (8), the above integration can be reduced to

eij ¼
1

2V

Z
Sj

ðujþi

"
� uj�i Þnj dS þ

Z
Si

ðuiþj � uj�j Þni dS
#
¼ 1

2V
ðcjiSj þ cijSiÞ ¼

cjiDxiDxk þ cijDxjDxk
2DxiDxjDxk

Therefore,

eij ¼
1

2

cjiDxi þ cijDxj
DxiDxj

ð13Þ

Note that the suffixes i and j in the above expressions are not dummy ones.

Likewise, by using the Gauss theorem and equilibrium equation rij;j ¼ 0, the average stress can be ex-

pressed as (Aboudi, 1991; Suquet, 1987)

rij ¼
1

V

Z
S

rikxjnk dS ð14Þ

If one assumed that the stress distributions at the boundaries must also satisfy the periodicity condition,

then at the two corresponding points on the two opposite planes (with same in-plane coordinates) must

have the same normal and shear stresses. By a similar procedure as in the derivation of (13), Eq. (14)

reduced to

rij ¼
1

V

Z
S

rikxjnk dS ¼ 1

V

Z
Sþm

rþ
imx

þ
j dS

 
�
Z
S�m

r�
imx

�
j dS

!
¼ 1

V

Z
Sþm

rþ
imðxþj � x�j ÞdS

In the above the suffix m is a dummy suffix. However, when m 6¼ j, the coordinates xþj ¼ x�j and when m ¼ j,
xþj � x�j ¼ Dxj, therefore,

rij ¼
Dxj
V

Z
Sj

rij dS ¼ Pij
Sj

ðno summation over jÞ ð15Þ

The above equation indicates that the average stresses can be simply obtained from the resultant tractions

on the boundary surfaces by dividing them by the areas of the corresponding boundary surfaces.
For angle-ply laminates, the unified boundary conditions, Eq. (8) should be written in the skew coor-

dinate system, O–XsYsZs, i.e.
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ujþis ðxs; ys; zsÞ � uj�is ðxs; ys; zsÞ ¼ cji ð16Þ
In the above equation, all indices have the same meaning as in Eq. (8) except that they are now defined in

the skew coordinate system.

If only in-plane loads are considered (c31 ¼ c13 ¼ c32 ¼ c23 ¼ 0) and by using the relation between the dis-

placement components in the skew coordinate system and in the orthogonal O–XYZ coordinates, Eqs. (1)

and (2), the displacement boundary conditions in the O–XYZ coordinates can be written as (note that the

coordinates are expressed in the skew coordinate system in the following equations for clarity):

On planes ABCD ðxs ¼ DxsÞ and EFGH ðxs ¼ 0Þ:

½uxðDxs; ys; zsÞ � uxð0; ys; zsÞ� sin h � ½uyðDxs; ys; zsÞ � uyð0; ys; zsÞ� cos h ¼ c11 sin 2h

½uyðDxs; ys; zsÞ � uyð0; ys; zsÞ� cos h þ ½uxðDxs; ys; zsÞ � uxð0; ys; zsÞ� sin h ¼ c21 sin 2h

uzðDxs; ys; zsÞ ¼ uzð0; ys; zsÞ
ð17Þ

On planes ADHE ðys ¼ DysÞ and BCGF ðys ¼ 0Þ:
½uxðxs;Dys; zsÞ � uxðxs; 0; zsÞ� sin h � ½uyðxs;Dys; zsÞ � uyðxs; 0; zsÞ� cos h ¼ c21 sin 2h

½uyðxs;Dys; zsÞ � uyðxs; 0; zsÞ� cos h þ ½uxðxs;Dys; zsÞ � uxðxs; 0; zsÞ� sin h ¼ c22 sin 2h

uzðxs;Dys; zsÞ ¼ uzðxs; 0; zsÞ
ð18Þ

On planes BAEF ðzs ¼ DzsÞ and CDHG ðzs ¼ 0Þ:
½uxðxs; ys;DzsÞ � uxðxs; ys; 0Þ� sin h � ½uyðxs; ys;DzsÞ � uyðxs; ys; 0Þ� cos h ¼ 0

½uyðxs; ys;DzsÞ � uyðxs; ys; 0Þ� cos h þ ½uxðxs; ys;DzsÞ � uxðxs; ys; 0Þ� cos h ¼ 0

uzðxs; ys; 0Þ ¼ 0

uzðxs; ys;DzsÞ ¼ c33 ¼ const:

ð19Þ

Note that for the in-plane loading case, the constant c33 is not required to be specified. Its value will be

obtained through the FEM analysis. To eliminate the rigid body motion, the displacement components,

ux; uy of the center point of the RVE are assumed to be zero.

To apply Eqs. (17)–(19) in the FEM analysis, the mesh in opposite boundary surfaces should be same.

For each pair of displacement component at the two corresponding nodes with identical in-plane coor-

dinates on the two boundary surfaces a constraint equation is imposed. Although a large number of the

constraint equations needs to be applied, it is usually easy to produce all those equations by using certain
automatic schemes embedded in a FEM package.

Based on definitions of the average strain and stress, Eqs. (9) and (10), using the similar procedures as in

the derivations of Eqs. (13) and (15), and noting the geometric description of the RVE given by Eqs. (3), a

relation between the average strains and the constants cji , and the average stresses and resultant tractions on

the boundary surfaces are found as follows:

ex ¼
1

2l
ðc11 þ 2c21 þ c22Þ

ey ¼
1

2l
ðc11 � 2c21 þ c22Þ

exy ¼
1

l sin 2h
ðc22 � c11Þ

ez ¼
c33
h

ð20Þ
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rx ¼
PAB
x þ PAE

x

2S sin h

ry ¼
PAE
y � PAB

y

2S cos h

rxy ¼
PAE
x � PAB

x

2S cos h
¼

PAB
y þ PAE

y

2S sin h

ð21Þ

In Eqs. (21) Px and Py are the resultant tractions on the boundary surface which can be obtained directly

from the FEA solutions.

4. Application examples

4.1. A 2-D illustrative example

To verify the unified boundary conditions, Eqs. (8), and the difference with the ‘‘homogeneous boundary

conditions’’ (or plan-remains-plane boundary conditions), a 2-dimensional RVE model is considered. The

model consists of a fiber reinforcement and matrix, with a volume fraction of 50%, Fig. 4. The elastic

moduli and Poisson�s ratio for the fiber and matrix are Ef ¼ 72; 500 MPa, mf ¼ 0:22 and Em ¼ 2600 MPa,

mm ¼ 0:40, respectively. For a pure shear deformation mode we apply the following two different sets of

boundary conditions to the RVE model:

(a) Periodic boundary conditions, Eqs. (8):

uAB � uEF ¼ 0; vAB � vEF ¼ 0:0018

uAE � uBF ¼ 0:0018; vAE � vBF ¼ 0

uF ¼ vF ¼ 0 ðto eliminate the rigid body motionÞ
ð22Þ

where u and v are displacement components along X and Y , respectively.

(b) Homogeneous boundary conditions:

The following homogeneous boundary conditions were suggested by Aboudi (1991) to be applied to the

boundary surface S of a representative volume element V :

Fig. 4. Deformed shape and shear stress distribution of a two dimensional RVE model with different applied boundary conditions:

(a) Eq. (22); (b) Eq. (24) (dashed lines show the undeformed shape).
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uiðSÞ ¼ e0ijxj ð23Þ

where e0ij is the average strain (Eq. (1.35) in Aboudi, 1991).

For the current example, the above equation reduces to

uAB ¼ 0:0018yAB; uEF ¼ 0:0018yEF
vAB ¼ 0:0018xAB ¼ 0:0018; vEF ¼ 0:0018xEF ¼ 0

uAE ¼ 0:0018yAE ¼ 0:0018; uBF ¼ 0:0018yBF ¼ 0

vAE ¼ 0:0018xAE; vBF ¼ 0:0018xBF

ð24Þ

Note that the origin of the coordinate system is set at the point F of the square RVE and the above

boundary conditions specify that all displacement components are linearly distributed at the boundaries,

i.e. a plane-remains-plane.

4.1.1. Results of finite element analysis

Case (a). The deformed shape for this case is shown in Fig. 4(a). One notes that the boundaries do not

remain planes after the deformation. The resultant tractions at the boundaries are

at AE and BF : Nyx ¼ �6:4831; Nyy ¼ 0; at AB and EF : Nxx ¼ 0; Nxy ¼ �6:4831

Further examination of the stress distribution indicates that at all boundaries the normal stress com-

ponents are zero and the shear stresses are uniform in the whole body as shown in Fig. 4b, i.e. the RVE is
subject to a pure shear load. In addition, not only the displacements but also the stress distributions along

the boundaries satisfy the periodic conditions. Therefore, the average shear strain and the average shear

stress can be calculated from Eqs. (13) and (15) resulting in c ¼ 2exy ¼ 0:0036 and s ¼ rxy ¼ 6:4831 MPa,

respectively, and the equivalent shear modulus is G ¼ 1801 MPa.

Case (b). The deformed shape is shown in Fig. 4(b). The boundary lines remain straight lines. Therefore,

the displacement periodicity is satisfied but it is an over-constrained condition in comparison with the

results in Fig. 4(a). Now let us look at the resultant forces and moments at the boundaries. They are

At AE and BF : Nyx ¼ �24:335; Nyy ¼ 0; M1 ¼ 10:3494

At AB and EF : Nxx ¼ 0; Nxy ¼ �4:5963; M2 ¼ 0:4807

Note that in this case the resultant shear forces at the boundaries AE and AB are not equal. This in-

dicates that the unit cell is not subject to a pure shear force and other forces (moments) must be applied to

the boundaries in order to maintain force and moment equilibrium, see Fig. 5(a). Fig. 5(a) and (b) also

show the distributions of stress components rx and ry , respectively. It is seen that the rx and ry give rise to
boundary momentsM2 andM1 to ensure that the unit cell as a whole is in equilibrium. However, the normal

traction at the corresponding points on the opposite sides have opposite signs; one is in tension while the

other in compression as seen in Fig. 5(b) at points C and D. This implies that the traction distribution at the

corresponding opposite boundaries does not satisfy the periodic condition and as such a ‘‘RVE’’ model

cannot be arranged in a periodic array to represent a composite material. Accordingly, it is clear that the

‘‘homogeneous displacement boundary conditions’’ are not appropriate boundary conditions for the RVE

of composite materials subject to a shear load.

The average shear strain and the average shear stress in this case are c ¼ 2e0xy ¼ 0:0036 and
s ¼ rxy ¼ 24:972 MPa, respectively, and the equivalent shear modulus is G ¼ 6937 MPa. We can see that

the homogeneous displacement boundary condition does greatly overestimate the modulus.
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4.2. Prediction of the elastic constants of a unidirectional laminate

The unidirectional laminate is assumed to be orthotropic and linearly elastic. In a matrix notation form,

the constitutive relation of this effective material can be written as

½e� ¼ ½S�½r� ð25Þ
where ½S� is the compliance matrix,

½S� ¼

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0
0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

2
6666664

3
7777775

ð26Þ

After obtaining the rij and eij for given cji from Eqs. (13) and (15) of a RVE, the Sij can be obtained from

(31). The relation between the engineering elastic constants and Sij are

E1 ¼
1

S11
m12 ¼ � S12

S11
G12 ¼

1

2S44

E2 ¼
1

S22
m13 ¼ � S13

S11
G13 ¼

1

2S55

E3 ¼
1

S33
m23 ¼ � S23

S22
G23 ¼

1

2S66

ð27Þ

It should be noted that for a general orthotropic material, nine independent material constants must be

determined. However, Eq. (26) contains only six equations; thus two sets of solutions are required. Note

that the last three equations will result in the same moduli for the two sets of solutions. Thus, in total there

are nine independent equations for nine independent material constants. All the nine constants are,

therefore, determined by solving the nine equations. For a large scale problem, it is not feasible to un-

dertake a full micromechanical simulation, instead, approaches called �macro–micro� analysis are frequently
used, whereby for a large composite structure, the micromechanical method is firstly used to predict the
elastic constants of the representative points or regions of the composite structure (Moorthy and Ghosh,

Fig. 5. Resultant boundary forces and distribution of stress components by applying homogeneous boundary conditions: (a) distri-

bution of rx; (b) distribution of ry .
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1998). Thus, an efficient method of predicting elastic constants will make the macro–micro simulations

more successful.
The RVE model in Fig. 1 is meshed with three-dimensional eight-node hexahedral elements. The finite

element mesh is constructed with 1881 nodes and 1536 brick elements for the unidirectional RVE (Fig. 6).

The mesh grids in the opposite surfaces of the rectangular RVE are the same, i.e., the number of nodes in

the opposite surfaces are equal, and the corresponding nodes on the two surfaces have the same coordinates

in their plane. For example, the nodes in the plane of x ¼ 0 and x ¼ 1 can be related in pairs with the same

y; z coordinates. This provides a considerable convenience in the implementation of the periodic boundary

constraints as expressed by Eq. (8).

In this study, the unidirectional composite laminate is composed of aluminum matrix and boron fiber
(model 1, shown in Fig. 1) and the angle-ply laminate is made of E-glass fiber and epoxy matrix (model 2,

shown in Fig. 2). All the constituent materials are assumed to be isotropic elastic but with different material

properties. Table 1 indicates the materials properties used in the calculations. The fiber volume fractions of

the unidirectional lamina and angle-ply laminates are 47% and 52.5%, respectively.

The following two sets of cji are used in the calculation of the unidirectional laminate model

(Dx ¼ Dy ¼ Dz ¼ 1):

Fig. 6. (a) The finite element mesh of the RVE model for the unidirectional laminate; (b) deformed shape under shear.

Table 1

Material properties of fiber and matrix (Ellyin et al., 2002; Sun and Vaidya, 1996)

Material E (MPa) m

Boron 3.793� 105 0.1

Aluminum 6.83� 104 0.3

E-glass 7.25� 104 0.22

Epoxy 2.6� 103 0.4

Table 2

Results and comparison for unidirectional boron/aluminum laminate (Vf ¼ 0:47)

Elastic

constants

Present Sun and

Vaidya (1996)

Sun and

Chen (1991)

Chamis

(1984)

Whitney and

Riley (1966)

Hashin and

Rosen (1964)

Test data Kenaga

et al. (1987)

E1 (GPa) 214 215 214 214 215 215 216

E2 (GPa) 143 144 135 156 123 135.2 140

G12 (GPa) 54.2 57.2 51.1 62.6 53.9 53.9 52

G23 (GPa) 45.7 45.9 – 43.6 – 52.3 –

m12 0.195 0.19 0.19 0.20 0.19 0.195 0.29

m23 0.253 0.29 – 0.31 – 0.295 –
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Set 1: c11 ¼ c22 ¼ c33 ¼ 0:012, cji ¼ 0:016 ði 6¼ jÞ, Set 2: c11 ¼ c22 ¼ 0:018 all other cji ¼ 0.

The predicted elastic properties of the unidirectional boron/aluminum laminate (E3 ¼ E2, G13 ¼ G12 and

m13 ¼ m12) and a comparison with the numerical, analytical and the available experimental data are given in

Table 2. It is to be noted that the analytical results of Hashin and Rosen (1964), based on energy variational
principles, provide bounds for the elastic moduli, and the average values are used in the table.

It is seen from examining Table 2 that the predicted properties are generally in good agreement with the

results in the literature, and the experimental values.

The deformed shape of the RVE under an applied pure shear periodical displacement boundary con-

dition, c32 ¼ c23 ¼ 0:016, and all other cji ¼ 0, is shown in Fig. 6b. It is seen that the deformed boundary

surfaces no longer remain planes.

4.3. Prediction of in-plane moduli for angle-ply laminates

Fig. 7 shows the meshed RVEs for �15� (�75�) and �30� (�60�) laminates, each having 3681 nodes and

3072 elements.

From the microstructure of the laminate, it is reasonable to assume that the laminate is orthotropic in the

sense of overall response, i.e., for average stresses and average strains, we have

Fig. 7. Meshed RVE for angle-ply laminates (a) meshed RVE for �15� (�75�); (b) meshed RVE for �30� (�60�).
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Fig. 8. Ex–h curves for angle-ply laminates.
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In a manner similar to that described in Section 4.2 above, two sets of c11, c
2
2, c

2
1 are specified to obtain the

elastic constants in (28). The in-plane elastic moduli can be obtained from

Ex ¼
1

S11
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1

S22
; mxy ¼ � S12

S11
and Gxy ¼

1

2S66
ð29Þ

Figs. 8 and 9 show the predicted Ex and Gxy for angle-ply laminates with varying angles and a comparison

with the results obtained by using the classical laminate theory (CLT). The lamina properties used in the

CLT calculations are taken from experimental data (Hoover, 1999) and are given in Table 3.

From Figs. 8 and 9, it is seen that the differences between the results of the CLT and the present
micromechanical model are rather small. And from the limited experiment points (Ellyin and Kujawski,

1995; 3M Minnesota Mining & Manufacturing Co.), it seems that the present micromechanical results are

in good agreement with the experimental data. Note that the micromechanical results are based on the

properties of the two constituents (fiber and matrix, Table 1), while the CLT results are based on the global

properties of lamina, Table 3.
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Fig. 9. Gxy–h curves for angle-ply laminates.

Table 3

Elastic properties for unidirectional E-glass/epoxy lamina (Hoover, 1999)

Property E-glass/epoxy lamina (3M-1003)

E1 (GPa) 41.7

E2 (GPa) 13.0

m12 0.3

G12 (GPa) 3.4
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5. Conclusions

The following conclusions are drawn from the present study:

1. An explicit unified form of boundary conditions for a parallelepiped-shaped periodic RVE model is pre-

sented which satisfy the periodicity conditions and are suitable for any combination of multiaxial loads.

2. The ‘‘homogeneous boundary conditions’’ (plane-remains-plane) are not only over-constrained condi-

tions but they may also violate the stress periodicity conditions. Thus, they cannot be used to represent

periodical structures of the composite laminae or laminates under loading conditions with shear compo-

nents.

3. The proposed unified boundary conditions satisfy not only the boundary displacement periodicity but

also boundary traction periodicity of the RVE model and as such represent periodical structures of
the composite laminae or laminates under general multiaxial loading condition.

4. A meso/micro-mechanical RVE model has been developed for any angle-ply laminates.

5. A method to evaluate the average stresses and strains has been derived based on the applied boundary

conditions and the resultant forces at the boundaries. By applying two sets of values of the proposed

boundary conditions, all elastic moduli for the unidirectional or angle-ply laminates can be predicted

simultaneously. The predicted results are in good agreement with the results available in the literature,

and the experimental data.

6. The basic relations proposed in this paper do not depend on the properties of the constituent materials
of a composite. Therefore, they can also be applied to nonlinear micromechanical analysis of the com-

posites under multiaxial loads. However, all the derived equations in this paper are based on small de-

formation theory.
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