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A B S T R A C T

Accurate predictions of physically nonlinear elastic behaviors of a material point in the structure are essential to
the further analyses which are beyond the linear elasticity regime, for example, the progressive damage and the
failure. In light of substantial experimental evidence of nonlinear shear stress-strain responses in composites, it is
necessary to consider them in the structure-level simulations rigorously. A variational asymptotic beam model is
developed for this purpose. The three-dimensional continuum is rigorously reduced to a two-dimensional cross-
sectional analysis and a one-dimensional Euler-Bernoulli beam analysis. The original three-dimensional con-
tinuum features material nonlinearities in longitudinal shear. The unknown cross-sectional warping is solved by
finite element method using the principle of virtual work. Nonlinear beam constitutive relation and three-di-
mensional stress and strain fields are obtained.

1. Introduction

Fiber-reinforced plastic composites (FRP) exhibit physically non-
linear behaviors in both elastic and inelastic regions. The primary cause
of the elastic nonlinearity has been discovered to be the lamina shear
stresses once they are relatively large compared to the longitudinal
tensile stresses. In this situation, the resin matrix dominates in the
mechanical performance of the composites. Consequently, because the
shear stress-strain responses of polymer resins are nonlinear over the
entire strain range and at very low strain levels, the in-plane shear re-
sponses of FRP plies are nonlinear over the entire range examined [1].

Several mathematical models have been published to describe the
nonlinear stress-strain responses. A widely used example of these
models are developed by Hahn and Tsai [2] by employing a plane-stress
complementary energy function which contains a biquadratic term for
in-plane shear stress. Stress field predicted by such a constitutive law is
used to formulate the failure criterions which are successful in pre-
dicting the failure due to stress concentrations [3,4]. Another widely
used model is the Ramberg-Osgood equation [5] which is also popular
in metal fatigue studies. A more flexible description methodology is to
utilize mathematical curve fitting functions [6–8]. A comprehensive
review of the nonlinear constitutive models for shear nonlinearity can
be found in [9].

The focus of this paper is not to just provide another method to
describe the nonlinear shear stress-strain law but to bridge the

theoretical gap between the physically nonlinear laws and the me-
chanics of slender solid made of the materials which are governed by
these laws. We have two main motivations for this study. Firstly, the
knowledge of the nonlinear shear stress-strain response of the compo-
sites can be obtained from the measurements of loaded slender cou-
pons. For example, the ASTM D3518/D3518M Standard Test Method
[10] for “in-plane shear response of polymer matrix composite mate-
rials by the tensile test of ± °45 laminate” is based on the measured
uniaxial force-strain response of a symmetrically ± °45 -laminated
coupon. A rigorous beam model can serve as a virtual coupon to relate
the uniaxial force-strain response precisely with the three-dimensional
(3D) stress and strain fields by the cross-sectional analysis. Conse-
quently, the beam model can be used along with the data matching
tools to calibrate the material constants built into the material de-
scriptions. Secondly, the nonlinear in-plane shear responses have im-
pacts on the one-dimensional (1D) constitutive responses of beams.
Predictions of static failure loads and natural frequencies of composite
beams are affected by the predefined 3D nonlinear stress-strain laws.

A substantial amount of work has been devoted to model composite
beams. The conventional beam theories adopt the ad hoc assumptions,
for example, the cross section remains rigid in its own plane and pos-
sesses uniaxial stress state, have limited their generality and accuracy in
predicting the behavior of composite beams. An advanced theory
should be free from the limitation of unnecessary kinematic assump-
tions and minimize the information loss from the original 3D model.
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The variable kinematic model, known as the Carrera Unified
Formulation (CUF) [11], permits one to develop a structural model with
a variable number of displacement unknowns in a hierarchical manner.
Another systematic approach for modeling composite beams has been
developed by Hodges and his co-workers during the last three decades
[12–17]. This approach uses the Variational Asymptotic Method (VAM)
[18] to rigorously split the original 3D geometrically nonlinear and
materially linear problem of the slender structure into a 1D global beam
analysis and a two-dimensional (2D) cross-sectional analysis. The 2D
cross-sectional analysis is called Variational Asymptotic Beam Sectional
Analysis (VABS). The advantageous feature of this approach is that the
resulting beam models are still in the form of simple engineering
models such as the Euler-Bernoulli beam model or the Timoshenko
beam model without the ad hoc assumptions such as that the plane
cross section remains plane associated with these models. VABS pro-
vides the constitutive relations needed for the global 1D beam analysis
and computes the pointwise fields (such as stress and strain) within the
original 3D structure based on the global beam behavior. The nonlinear
elasticity is studied in VABS framework firstly by assuming nonlinear
strain definition (Green strain in St-Venant/Kirchoff model) to examine
the trapeze effect for strip-like beams [19]. Jiang, Yu, and Hodges ex-
tended the VABS theory to deal with various types of hyperelastic
material both analytically [20] and numerically [21]. The motivations
to use VABS instead of 3D FEA is the computational efficiency, nu-
merical stability, coupon constitutive relation representative, and
flexibility for complex composite mold profile.

In the present work, VABS is extended to model the physically
nonlinear beams. In light of releasing the small warping assumption to
the finite warping, the nonlinear product terms of the warping and
curvatures are retained in the strain formulation. The theoretical
foundation of VABS is updated from minimizing the strain energy to the
principle of virtual work. Newton-Raphson method is utilized to solve
for the converged warping solution iteratively.

The Hahn-Tsai [2] nonlinear in-plane shear model is used for vali-
dation purpose by comparing the VABS results with those from 3D FEA.
Both static and dynamic examples are given. The ± °45 -laminated
coupon tensile tests are simulated. 3D local fields such as the free-edge
stresses are precisely captured by the present model. Nominal stress-
strain curves predicted for various composite beams with different
cross-sections are compared to show the impact of the cross-sectional
designs of the coupons on their performances in calibrating the material
constants.

2. Variational asymptotic beam sectional analysis (VABS)

2.1. Theoretical formulation

In Fig. 1, ei for i = 1, 2, 3 are fixed dextral, mutually perpendicular
unit vectors in the absolute reference frame, and r0 and R0 denote the
position vector of the material point on the reference line of the un-
deformed and deformed configurations, respectively. bi and Bi are the

orthogonal triads attached to the cross-section in the undeformed and
deformed configurations, respectively. Here and through all the paper,
expect where explicitly indicated, Greek index α assumes values 2 and
3, whereas Latin indices (i j k l m n p, , , , , , , and q) assume values 1, 2, and
3. Repeated indices are summed over their range except where ex-
plicitly indicated.

The material position vectors in the undeformed and deformed
beam body can be expressed as

= +r r bxα α0 (1)

= + +R R B Bx w x x x( , , )α α i i0 1 2 3 (2)

with wi representing the 3D unknown warping functions to describe the
difference between the position of deformed body and those can be
described by deformation of the reference curve x1 in terms of

+R Bxα α0 . R0 can also be expressed as

= +R r u0 0 (3)

where u denotes the beam displacement. Note u is not the displacement
of some material point in the original structure. Rather it is the dis-
placement field of the beam model (points on the beam reference line)
we are constructing. In Eq. (2), we actually express R in terms of R B, i0 ,
and wi, which is six times redundant. Six constraints are needed to
ensure a unique mapping. We can choose B1 to be tangent to the de-
formed reference line which introduces two constraints since we are
building a model of Euler-Bernoulli type. As discussed in [16], we can
also introduce the following four constraints for the warping functions:

〈 〉 = 〈 − 〉 =w w w0, 0i 2,3 3,2 (4)

From here and throughout the paper we assume a prismatic beam
with uniform cross-sectional geometry. To derive a theory of the clas-
sical (Euler-Bernoulli) type, we define the following generalized 1D
strains:

′ = +R Bγ(1 )0 1 (5)

′ = ×B B Bκi j j i (6)

in which the upper prime denotes derivative to x γ,1 the axial strain, κ1

the twist and κα the curvature of the deformed beam reference line. It is
noted that these definitions of beam strains have nothing related with
the well-known Euler-Bernoulli assumptions. Instead, we are con-
structing a model which is capable of capture extension (γ), torsion (κ1),
and bending in two directions (κα) with the possibility to capture all the
3D displacements, strains, and stresses due to these four fundamental
deformation modes allowed in the Euler-Bernoulli beam model without
apriori assuming that some components of the 3D fields vanish as most
other theories do.

In Fig. 1, gi denote the covariant base vectors of the undeformed
body. And let the controvariant base vectors of the undeformed body
denoted by gi. Then we have

= =g g bi
i i (7)

for prismatic beams. The covariant base vectors of the deformed con-
figuration can be evaluated as

= ∂
∂

G R
xk

k (8)

Together with Eq. (6), we have

= + + ′− + + +
+ ′− + +
+ ′ + + −

G B
B
B

γ w x w κ x w κ
w x w κ w κ
w x w κ w κ

[1 ( ) ( ) ]
[ ( ) ]
[ ( ) ]

1 1 2 2 3 3 3 2 1

2 3 3 1 1 3 2

3 2 2 1 1 2 3 (9)

= + + +G B B Bw w w(1 )2 1,2 1 2,2 2 3,2 3 (10)

= + + +G B B Bw w w(1 )3 1,3 1 2,3 2 3,3 3 (11)

Then the deformation gradient tensor can be formulated as the dyadicFig. 1. Schematic of undeformed and deformed beam.
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product of Gi and gi in the 3D Euclidean space, that is

= = + +

=
⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣

⎢
⎢
⎢

′ + + − + + +
′ + − − +

′− + + +

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎩

⎫

⎬
⎭

F G g G b G b G b

B
B
B

b
b
b

w γ x w κ x w κ w w
w w κ w κ x κ w w

w w κ w κ x κ w w

1 ( ) ( )
1

1

i
i

1 1 2 2 3 3

1

2

3

T 1 2 2 3 3 3 2 1,2 1,3

2 1 3 3 1 3 1 2,2 2,3

3 1 2 2 1 2 1 3,2 3,3

1

2

3

(12)

which is a mix-based second-order tensor. The terms of w κ w κ w κ, ,1 3 3 1 1 2,
and w κ2 1 were neglected in the pioneering works on VABS [12–14,16]
based on the assumption of small warping. However, warping is not
necessarily small when the structure experiences material nonlinearity.
Therefore, in this paper, these terms are retained regarding the finite
warping.

Denote the beam cross-sectional characteristic dimension as h and
the wavelength of deformation as l. Consequently, the intrinsic slender
feature of beams can by described by ≪h l/ 1. Using the bookkeeping
parameter ε to express the magnitude of the maximum strain, we have

=ε γ hκ hκ hκmax( , , , )1 2 3 (13)

Based on the previous works on VABS [12,14,16] it has been shown
that

=w O hε( )i (14)

Because of the slenderness of beams, it is clear that the following is
still true:

′ ∼ = ⎛
⎝

⎞
⎠

≪w w
l

O h
l

ε εi
i

(15)

In light of Eq. (15), the underlined ′wi terms in Eq. (9) can be neglected
because their contributions to the governing functional are much
smaller than the contributions of other terms. By neglecting these
terms, the components of F in Eq. (12) can be arranged into a matrix as

=

=
⎡

⎣

⎢
⎢

+ − + + +
− − +

+ + +

⎤

⎦

⎥
⎥

B G g bF

γ x w κ x w κ w w
w κ w κ x κ w w

w κ w κ x κ w w

·( )·

1 ( ) ( )
1

1

ij i k
k

j

2 2 3 3 3 2 1,2 1,3

1 3 3 1 3 1 2,2 2,3

1 2 2 1 2 1 3,2 3,3 (16)

Based on the concept of decomposition of rotation tensor [12], if the
local rotation is small, which is the case for the framework of VABS
except for the generalized solution for trapeze and Poynting effects
[20,21], the 3D Jaumann-Biot-Cauchy strain components are given by

= + −F F δΓ 1
2

( )ij ij ji ij (17)

where δij is the Kronecker delta. If the large local rotation is also con-
sidered for the kinematic nonlinearities, nonlinear strain definitions
[22,23] should be applied.

According to [21], we can conclude that the warping function can
be solved from the following variational statement:

= 〈 〉 =δ P δΓ 0ij ijU (18)

where Pij are the components of the Cauchy stress tensor resolved into
the beam cross-sectional triad. Pij can be defined by

= ∂
∂

P W
Γij

ij (19)

where W is the internal elastic energy in the deformed body.

2.2. Finite element implementation

The finite element method is used to solve the variational statement
in Eq. (18). The 3D strain field in Eq. (17) can be expressed as

= + + ∊∊wΓ (Γ Γ ) Γh κ (20)

with

=Γ [Γ 2Γ 2Γ Γ 2Γ Γ ]11 12 13 22 23 33
T (21)

=w w w w[ ]1 2 3
T (22)

∊ = ∊ ∊ ∊ ∊ = γ κ κ κ[ ] [ ](1) (2) (3) (4)
T

1 2 3
T (23)

The operators in Eq. (20) are defined as follows:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
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−
−

⎤

⎦

⎥
⎥
⎥
⎥
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=

⎡

⎣

⎢
⎢
⎢
⎢
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−
−

−
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⎥
⎥
⎥

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

∊

x x
x

x

κ κ
κ κ

κ κΓ

0 0 0
0 0

0 0

0 0

0

0 0

, Γ

1 0
0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, Γ

0
0

0
0 0 0
0 0 0
0 0 0

h

x

x

x

x x

x

κ

3 2

3

2

3 2

3 1

2 1

2

3

2

3 2

3

(24)

Let w be discretized using finite elements as

=w SV (25)

Substituting Eq. (25) into Eq. (20) then into Eq. (18), we arrive at the
following nonlinear system

= 〈 + 〉 =V S P( ) [(Γ Γ ) ] 0h κ
TR (26)

where

=P P P P P P P[ ]11 12 13 22 23 33
T (27)

The Newton-Raphson method is applied to solve for V iteratively. Let Vo
denote the initial guess, and let dV denote a correction to the Vo. In the
neighborhood of V ,o R in Eq. (26) can be expanded in a Taylor series
with the high order terms neglected as

+ ≈ + ⎛
⎝

∂
∂

⎞
⎠

=
=

V dV V
V

dV( ) ( ) 0o o
V V( )o

R R
R

(28)

which is iteratively solved for the correction dV to Vo by updating Vo as

← +V V dVo o (29)

until the updated value of Vo is converged during the iteration. In Eq.
(28),

�
∂
∂

= 〈 + + 〉
V

S S[(Γ Γ ) ] [ ][(Γ Γ ) ]h κ h κ
TR

(30)

with �[ ] as the ×6 6 matrix condensed from components of the tangent
elasticity tensor

� �=
∂
∂

=
P

β β β β
Γijkl

ij

kl
im jn kp lq mnpq (31)

where �mnpq is the tangent elasticity tensor in ti lamina bases, and βij is
the component of the direction cosine matrix of transformation from ti
to bi following the coordinate convention shown in Fig. 2. Under the
same convention, the stress and strain tensors can be transformed by

= =P β β σ β β ε, Γij ik jl kl ij ik jl kl (32)

where σkl and εkl are stress and strain components resolved in the ma-
terial coordinates ti of each lamina.

Meanwhile, the four constraints in Eq. (4) can be written in a matrix
form as

〈 〉 =F S V( ) 0c (33)

with
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=

⎡

⎣

⎢
⎢
⎢
⎢ −

⎤

⎦

⎥
⎥
⎥
⎥

∂
∂

∂
∂

F

1 0 0
0 1 0
0 0 1
0

c

x x3 2 (34)

Giving the beam strain ∊ in the form of stepwise updating of ∊o by an
increment ∊d as

∊ = ∊ + ∊do (35)

we can solve for dV iteratively for each loading step using

⎧
⎨⎩

⎫
⎬⎭

= −⎧
⎨⎩

〈 + 〉⎫
⎬⎭× ×

dV
λ

S P
Ξ [ ]

[(Γ Γ ) ]
[0]

h κ

4 1

T

4 1 (36)

with

�
= ⎡

⎣⎢
〈 + + 〉 〈 〉

〈 〉
⎤
⎦⎥×

S S F S
F S

Ξ
[(Γ Γ ) ] [ ][(Γ Γ ) ] ( )

( ) [0]
h κ h κ c

c

T T

4 4

and ×λ[ ]4 1 as a column matrix consisting of Lagrange multipliers.
To calculate the sectional stress resultants, define the following

column matrix

Fig. 2. VABS coordinate convention.

Fig. 3. Partition of the 3D −[45/ 45]s square-section composite beam.

Fig. 4. Comparison of extensional constitutive data.

Fig. 5. Tangent beam stiffness predicted by VABS as a function of axial strain.

Fig. 6. Reduction of the natural frequency due to pre-strain and shear nonlinearity.

Fig. 7. Comparison of bending constitutive data.
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= ∂ ∊
∂ ∊

=δ δ δ δ δ i[ ] , 1,2,3,4i
i

i i i i( )
( )

1 2 3 4
T

(37)

where =δ 1ij( ) if =i j and =δ 0ij( ) if ≠i j, in which =i j, 1, 2, 3, 4. In
addition, denote

= =R R R R R F M M M[ ] [ ](1) (2) (3) (4)
T

1 1 2 3
T (38)

According to [2], it is known that the elastic strain energy W can be
obtained by

= − ∗W P WΓT (39)

where ∗W denotes the complimentary energy. Regarding the definition
of strain

= ∂
∂

∗W
P

Γ (40)

we can evaluate the sectional resultant components in R corresponding
to the strains ∊ as

=

= + ⎡
⎣

⎤
⎦

− = ⎡
⎣

⎤
⎦

=

∂〈 〉
∂ ∊

∂
∂

∂
∂ ∊

∂
∂ ∊

∂
∂

∂
∂

∂
∂ ∊

∂
∂ ∊

∗( )
R

P P

i

Γ ,

1,2,3,4

i
W

P W
P

P

( )

T
Γ

Γ Γ
T T

Γ
Γ Γ T

i

i i i i

( )

( ) ( ) ( ) ( )

(41)

where

∂
∂ ∊

= + ∂
∂ ∊

+ + ∂
∂ ∊∊δ S V S VΓ Γ (Γ ) (Γ Γ )

i
i

κ

i
h κ

i( )
( )

( ) ( ) (42)

It is possible to prove that the derivatives of the warping values on the
beam strains do not affect the resultant R. Due to the discretization,
nodal warping values are variables independent of the sectional co-
ordinates, then V dV, , and ∂

∂ ∊
V

i
can be extracted out of the sectional

integration. In light of Eq. (26),

⎡
⎣
⎢ + ∂

∂ ∊
⎤
⎦
⎥ = ⎡

⎣
⎢

∂
∂ ∊

⎤
⎦
⎥ 〈 + 〉 = ⎡

⎣
⎢

∂
∂ ∊

⎤
⎦
⎥ =S V P V S P V(Γ Γ ) [(Γ Γ ) ] 0h κ

j j
h κ

j( )

T

( )

T
T

( )

T

R

(43)

As a result,

= ⎡
⎣⎢

+ ∂
∂ ∊

⎤
⎦⎥

=∊R δ S V P iΓ (Γ ) , 1,2,3,4i i
κ

i
( ) ( )

( )

T

(44)

In addition, the tangent beam cross-sectional stiffness can be ex-
pressed as

�

=

= ⎡
⎣

⎤
⎦

+ ⎡
⎣

+ ⎤
⎦

⎡
⎣

⎤
⎦

=

∂
∂ ∊

∂
∂ ∊

∂
∂ ∊ ∊

∂
∂ ∊

∂
∂ ∊

T

P δ V

i j

Γ [ ] ,

, 1,2,3,4

ij
R

S V
i

S(Γ )
T

( )
(Γ ) T Γ

i

j

κ
i j

κ
i i

( )

( )

( ) ( ) ( ) ( )

(45)

Derivatives of warping values with respect to the beam strain ∂
∂ ∊

V
i( )
can

be computed using Eq. (26). Taking derivatives with respect to ∊ i( ) on
both sides gives

�= ⎡
⎣

⎤
⎦

+ + ⎡
⎣

⎤
⎦

=

=

∂
∂ ∊

∂
∂ ∊

∂
∂ ∊P S

i

[(Γ Γ ) ] [ ] 0,

1,2,3,4

S
h κ

(Γ ) T
T Γ

i

κ
i i( ) ( ) ( )

R

(46)

In light of the warping constraints Eq. (33), we have the same con-
straints on ∂

∂ ∊
V

i( )
as

〈 〉 ∂
∂ ∊

=F S V( ) 0c
i( ) (47)

Fig. 8. Comparison of twisting constitutive data.

Fig. 9. Comparison of stress σ11 contour plots at =γ 0.01556.
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Combining Eqs. (46) and (47), ∂
∂ ∊

V
i( )
can be solved by

�⎧
⎨
⎩

⎫
⎬
⎭
= −

⎧

⎨
⎩

⎡
⎣

⎤
⎦

+ + ⎡
⎣

+ ⎤
⎦

⎫

⎬
⎭

=

∂
∂ ∊

×

∂
∂ ∊ ∊

∂
∂ ∊

×

Ξ
λ

P S δ V

i

[ ]

[(Γ Γ ) ] [ ] Γ

[0]
,

1,2,3,4

V S
h κ i

S

4 1

(Γ ) T
T

( )
(Γ )

4 1

i
κ

i
κ

j( ) ( ) ( )

(48)

3. Numerical examples

3.1. Nonlinear beam constitutive law

To validate the present VABS theory, consider the third-order elastic
nonlinear shear model proposed by Hahn and Tsai [2], that is,

Fig. 10. Comparison of stress σ12 contour plots at =γ 0.01556.

Fig. 11. Comparison of stress σ13 contour plots at =γ 0.01556.

Fig. 12. Comparison of stress σ22 contour plots at =γ 0.01556.
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= +ε σ
G

σ
X

2 12
12

12

12
3

12 (49)

So the tangent compliance matrix can be obtained by

� � �= +
σ
X

[ ] [ ] 3 [ ]12
2

12 (50)

where

Fig. 13. Comparison of stress σ23 contour plots at =γ 0.01556.

Fig. 14. Comparison of stress σ33 contour plots at =γ 0.01556.

Fig. 15. Examples of the meshing scheme.

Table 1
Comparison of computation aspects.

Computation aspect 3D FEA Nonlinear VABS

Time 19 h 39 min 41 s 3 min 43 s
Increments 4 20

Multi-Processor 40 1
Multi-GPU 4 0
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Fig. 16. Comparison of stress σ11 curve plots at =γ 0.01556.

Fig. 17. Comparison of stress σ22 curve plots at =γ 0.01556.
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Fig. 18. Comparison of stress σ12 curve plots at =γ 0.01556.

Fig. 19. Comparison of stress σ33 curve plots at =γ 0.01556.
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Fig. 20. Comparison of stress σ13 curve plots at =γ 0.01556.

Fig. 21. Comparison of stress σ23 curve plots at =γ 0.01556.
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The elastic properties are =E 155.651 GPa, = =E E 8.9772 3 GPa,
= = = =ν ν ν G0.3197, 0.44, 4.8812 13 23 13 GPa, =G 3.11723 GPa, =G12

6.18345 GPa, and = ×X 3.3984 1012
25 Pa3. The X12 value is obtained by

fitting the shear stress-strain measured from the tensile tests of
−[45/ 45]4s coupon composed by IM7/977-3 graphite/epoxy lamina

[24]. According to Hahn and Tsai [2], the X12 value is reported to be

×13.8764 1025 Pa3 for Morganite II/4617 system.
The geometry and mesh of the cross section of a −[45/ 45]s square-

sectioned laminate beam is analyzed by VABS. The layer thickness is
0.005 m, and the square-sectional edge is 0.02 m. Each layer contains 9
evenly spaced mesh divisions in the through-thickness dimension and
36 evenly spaced mesh divisions in the transverse dimension. The
section is meshed with 1296 eight-node quadrilateral elements, con-
taining 4033 nodes. The geometry, layout, and mesh of the cross section
can be found in Fig. 15(a). The corresponding 3D model is analyzed by
using the commercial FEA software Abaqus [25]. The material is ap-
plied by programming user-defined material subroutine (UMAT). The
length of the beam is 0.2 m, ten times its cross-sectional width. All
nodes on one of the beam end section are totally fixed. The nodes on the
other end section are completely kinematically constrained to a re-
ference point located at the geometric center of the section. The dis-
placement boundary condition is applied at this reference point with

= ×U 0.015 0.2x m. The reaction force is measured from the reference
point. The 3D laminate body is analyzed using a global-local approach
by partitioning the structure into three parts including one small part in
the middle and two large parts on the sides, as shown in Fig. 3. The
three parts have the same mesh schema in Y-Z plane as the cross-sec-
tional mesh analyzed by VABS shown in Fig. 15(a). In Z direction, the
large parts are each meshed with 179 divisions, and the small part is
meshed with 4 divisions. The large parts are each meshed by 231,987
20-node C3D20 elements containing 970,991 nodes. The small part is
meshed by 5184 20-node brick elements (C3D20) containing 25,641
nodes, where the nodal coordinates and displacements are reported
from the two cross sections located at =X 0.10056f m and

=X 0.09944b m, respectively.
To validate the VABS predictions, it is necessary to make sure the

axial strains applied on the 3D FEA model and VABS sectional model
are the same. The axial strain input into VABS is computed from the 3D
FEA model. The averaged final axial displacements from these two sets
of nodes at =X 0.10056f m and =X 0.09944b m are =U 0.0015087x

f m
and =U 0.0014914x

b m, respectively. Consequently, the final axial strain
of the effective 1D beam can be computed as

=
−
−

=γ
U U
X X

0.01556x
f

x
b

f b (52)

This strain is input into VABS to obtain the nonlinear beam sectional
effective force-strain constitutive curve. This curve is compared with
the reaction force-strain data reported from the Abaqus 3D FEA in
Fig. 4, from where good comparison is observed.

A good fitting equation to the VABS numerical prediction of the
axial beam constitutive law shown in Fig. 4 could be

= +γ c F c F1 1 2 1
3 (53)

where the fitted constants are = × −c 1.36238 101
7 (m/m)/N and

= × −c 2.88674 102
17 (m/m)3/N3. Solving Eq. (53) for F1 results in

=
+ + +

+ +
F

s s s γ s s s γ

s γ s s s γ

( )

( )
1

1 2 3 4 5 6
2 2/3

3 4 5 6
2 1/3 (54)

where the constants are
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From Eq. (54) the beam tangent stiffness can be computed as

= ∂
∂

=
+ + − + + +

+ + +
T F

γ
s s γ s s s γ s s s γ s s s γ

s s γ s γ s s s γ

( )[ ( ) ]

3 ( )
11
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2
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5 6
2

3 4 5 6
2 1/3

(56)

This analytical expression agrees the numerical results of T11 predicted
by VABS, as shown in Fig. 5.

Table 2
Mesh dependency of global beam behaviors.

Meshing scheme F1 (N) M1 (Nm) M2 (Nm)
γ = 0.01556 κ1 = 2.0 rad/m κ2 = 2.0 rad/m

4 × 4 × 16 (3D FEA) 62559.20 163.62 285.13
4 × 9 × 36 (3D FEA) 62523.07 163.61 284.98
4 × 4 × 16 (VABS) 62509.54 160.48 278.51
4 × 9 × 36 (VABS) 62508.15 160.47 278.50

4 × 100 × 36 (VABS) 62506.11 160.47 278.49
4 × 9 × 400 (VABS) 62507.02 160.47 278.50
4 × 800 × 36 (VABS) 62506.07 160.47 278.49
4 × 9× 3200 (VABS) 62507.00 160.47 278.50

Fig. 22. Cross-sectional geometry and layout of the tube section.

Fig. 23. Comparison of performances of virtual beam coupons.
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To validate theT11 from VABS with the result of 3D FEA, we examine
the extension mode natural frequency ω of the beam under the axial
pre-strain. Under the circumstance of pinned-pinned boundary condi-
tions, ω can be computed by

=ω π
l

T
ρA

11

(57)

where l is the beam length. The natural frequencies under various axial
pre-strains are normalized by the natural frequency without any pre-

strain. These normalized values are plotted in Fig. 6 with respect to the
corresponding pre-strains. It can be seen that the natural frequency is
reduced by the introduction of the pre-strain and the nonlinearity.

To examine the bending behavior, in the 3D FE model with brick
elements, the nodes on the two end sections of the beam are both ki-
nematically constrained to the reference points located at the geometric
centers of the two sections, respectively. The first reference point at

=x 0 is fixed inUx andUz and is applied with a rotation −θy (θ2 in VABS
coordinate convention). The second reference point at =x l (l is the

Fig. 24. Local stress fields on the cross-sectional domain of ASTM D3518 virtual coupon at =γ 0.01556.
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overall beam length) is fixed only inUz and is applied with a rotation θy.
These boundary conditions and constraints approximate a uniformly
distributed bending curvature κy (κ2 in VABS coordinate convention).
The reaction bending moment My (M2 in VABS coordinate convention)
on the second reference point is requested from the solution data base.
The bending curvature of the 3D beam is approximately estimated by

=κ
θ
l

2y
y

(58)

This bending curvature is input into VABS to obtain the nonlinear beam
bending constitutive curve. This curve is compared with the reaction
bending moment and curvature data reported from the 3D FEA, as
shown in Fig. 7.

In studying the twisting behavior of the beam, the layup is switched
to [0/90]s while the geometry and the mesh are kept unchanged. In the

3D FEA, the nodes on the two end sections of the beam are both ki-
nematically constrained to the reference points located at the geometric
centers of the two sections, respectively. One reference point at =x 0 is
overall clamped in displacements and rotations. The other reference
point at =x l is applied with rotation θx (θ1 in VABS coordinate con-
vention). These boundary conditions and constraints approximate a
uniformly distributed twisting curvature κx (κ1 in VABS coordinate
convention). The reaction twisting moment Mx (M1 in VABS coordinate
convention) on reference point at =x l is requested from the solution
data base. The twisting curvature of the 3D beam is approximately
estimated by

=κ θ
lx
x

(59)

This twisting curvature is input into VABS to obtain the nonlinear beam
twisting constitutive curve. This curve is compared with the reaction
twisting moment and curvature data reported from the 3D FEA, as
shown in Fig. 8.

The discrepancies between VABS and 3D FEA in Figs. 7 and 8 are
mainly caused by the boundary effects due to the kinematical couplings
on the end sections. The approximations of the bending and the twisting
curvatures, κ1 and κ2, in these examples may also induce the differences.
However, the agreement is good considering that the computational
cost is dramatically reduced.

3.2. Three-dimensional stresses

From 3D FEA of simple tension, coordinates and stress components
(values are measured in lamina coordinate) on the integration points
located at the beam axial coordinate =X 0.09975 m are reported. The
contour plots of this sectional stress fields are compared to the field
results obtained from VABS for the final incremental step, as shown in
Figs. 9–14 for σ σ σ σ σ, , , ,11 12 13 22 23, and σ33, respectively. Note that in 3D
FEA model the reference coordinate originates from the left-bottom
corner of the section. And in VABS the reference coordinate originates
from the sectional geometric center. Good agreement can be found
between VABS and 3D FEA. From Figs. 11, 13, and 14, it can be seen
that highly concentrated stress field occurs at the interfaces between
two dissimilar layers along the free edges. The stress fields are localized
within the boundary region and exhibit steep gradients with a rapidly
decaying behavior towards the inner laminate region. This is the so-
called free-edge effect [26,27]. To further investigate this phenomenon,
stress data along the free-edges and the interface boundaries will be
plotted in the next section. For the sake of space, VABS predictions and
the 3D FEA results of the local stress fields due to bending and twisting
actions are compared and documented in the Appendix.

3.3. Mesh dependency

In this section, a mesh dependency study will be presented. The
denotation of the meshing scheme is 4 × m × n, where m denotes the
inner-layer number of mesh divisions through the thickness, and n
denotes the transverse number of mesh divisions for all layers. For
example, the meshing scheme used in the previous section is
4 × 9 × 36 as shown in Fig. 15(a). For comparison purpose, in mesh
4 × 4× 16, the mesh division of each edge is in the double-bias pat-
tern in order to keep the same element size as in the mesh 4 × 9× 36
within the boundaries of the dissimilar layers and the free edges. As
shown in Fig. 15(b), the layer-wise through-thickness bias ratio is 3.5,
and the transverse bias ratio is 4.1066. In other schemes, the divisions
are evenly spaced. Other than 4 × 9× 36 and 4 × 4× 16, the other
meshing schemes analyzed by VABS are 4 × 100 × 36, 4 × 200 × 36,
4 × 300 × 36, 4 × 400 × 36, 4 × 500 × 36, 4 × 600 × 36,
4 × 700 × 36, 4 × 800 × 36, 4 × 9 × 400, 4 × 9 × 800,
4 × 9 × 1200, 4 × 9 × 1600, 4 × 9 × 2000, 4 × 9 × 2400,
4 × 9 × 2800, and 4 × 9 × 3200. The 3D stress fields converge at

Fig. 25. Comparison of the in-plane stresses of ASTM D3518 virtual coupon predicted by
VABS and CLPT. (The values of VABS are obtained by averaging the values at the in-
tegration points located at = ±x 4.632 E−6.)
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meshing schemes 4 × 800 × 36 and 4 × 9× 3200 which are not
considered in 3D FEA because of the prohibitive computational cost.
The computation aspects of VABS and 3D FEA with meshing scheme
4 × 9 × 36 are compared in Table 1.

For comparison, the coordinates of the integration point data from
Abaqus 3D FEA are transformed into the beam sectional triad. For the

sake of space, among the meshing schemes denser than 4 × 9× 36,
only 4 × 100 × 36, 4 × 800 × 36, 4 × 9 × 400, and 4 × 9× 3200
are plotted in Figs. 16–21. Between two dissimilar layers along the free
edges, mesh 4 × 800 × 36 and 4 × 9× 3200 predicts much higher
resolutions of stress fields. In Fig. 16(a), σ11 along the boundary of
dissimilar layers predicted by mesh 4 × 800 × 36 and 4 × 9× 3200 is

Fig. 26. Comparison of stress σ11 contour plots at =κ 2.02 rad/m.

Fig. 27. Comparison of stress σ12 contour plots at =κ 2.02 rad/m.

Fig. 28. Comparison of stress σ13 contour plots at =κ 2.02 rad/m.
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much larger than predictions from other meshing schemes. σ σ,11 22, and
σ12 predicted by mesh 4 × 9× 3200 converge to be continuous when x2

is bigger than 0.008 m or smaller than −0.008 m, as shown in
Figs. 16(b), 17(b), and 18(b). From Figs. 19–21, it can be seen that the
free-edge effects of σ σ,33 13, and σ23 have relatively minor mesh de-
pendencies. The agreements between VABS and 3D FEA data of mesh
4 × 4 × 16 and mesh 4 × 9× 36 are excellent. It is worth to note that

the intrinsic semi-analytical feature of VABS enables it to obtain such a
high fidelity comparable to 3D FEA with the tremendously reduced
computational time cost.

The global beam behavior predictions are relatively mesh-in-
dependent. As shown in Table 2, VABS converges faster than 3D FEA
does at high loading magnitudes and keep stable when the mesh con-
tains more than 14,400 elements.

Fig. 29. Comparison of stress σ22 contour plots at =κ 2.02 rad/m.

Fig. 30. Comparison of stress σ23 contour plots at =κ 2.02 rad/m.

Fig. 31. Comparison of stress σ33 contour plots at =κ 2.02 rad/m.
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3.4. Coupon performance

Mechanical properties of a material can be measured from loaded
coupons which are in fact structures. Then structural models are used to
decipher the material properties from the coupon measurements. For
example, to calibrate the in-plane shear response of a polymer matrix
composite, slender coupons made by ± °45 laminae are loaded with

force F1 in the beam axial direction. The in-plane shear stress is cal-
culated by =σ F

A12 2
1 where A is the beam cross-sectional area. In-plane

responses under such a loading are measured from the beam coupon,
and the in-plane shear strain is obtained by = −ε ε ε

12 2
x y . This metho-

dology is created based on the Classical Laminate Plate Theory (CLPT).
Based on the plane stress assumption, the material constitutive law is
reduced to

Fig. 32. Comparison of stress σ12 contour plots at =κ 2.01 rad/m.

Fig. 33. Comparison of stress σ13 contour plots at =κ 2.01 rad/m.

Fig. 34. Comparison of stress σ23 contour plots at =κ 2.01 rad/m.
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The ± °45 beam coupon is recommended by the literature [28,29] due
to its simplicity, reproducibility, and economy. Several limitations are
applied on the coupon design in order to keep the acceptable accuracy.
Petit [30] pointed out that small positive or tensile strains exist in ad-
dition to the relatively large shear strains in the principal direction of
the laminae. Consequently, tensile stress should exist in the long-
itudinal and transverse directions of the laminae, which will be proved
with examples in the present work. Rosen [31] considered the free edge
effect in the choice of the specimen width. Hahn [32] highlighted that
the layers should be arranged as homogeneous as possible to obtain the
acceptable results. He also claimed that =σ F

A12 2
1 was valid only if the

shear and extension was not coupled.
The present beam model is used to investigate such a material ca-

libration method. The first goal is to exam the assumptions and the
limitations. And the second goal is to find out if the assumptions made
in the calibration are valid when the calibrated material properties are
utilized to predict the structural behaviors. The cross-sectional sche-
matics of the virtual beam coupons are listed in the following

• Thick Square: The geometry of Fig. 15 with layup ±[ 45 ]37 s is con-
sidered. There are 148 plies and the single ply thickness is

× −1.351315 10 4 m. This example represents an inhomogeneous
layup.

• Thick Circular: A tubular cross section of Fig. 22 with layup ±[ 45 ]37 s
is considered. There are 148 plies and the single ply thickness is

× −1.351315 10 4 m. This example represents an inhomogeneous
layup and also the shear-extension coupling.

• Thin Rectangle: A very thin layup ±[ 45]s is considered. The single
ply thickness is × −1.33 10 4 m. The width of the cross section is
0.02 m.

• Thin Circular: A very thin tube with layup ±[ 45]s is considered. The
single ply thickness is × −1.33 10 4 m. The outmost radius is 0.075 m.

• ASTM D3518: A real coupon cross-sectional geometry with layup
+ −[( 45/ 45) ]4 s is considered. There are 16 plies and the single ply

thickness is × −1.32775 10 4 m. The width of the cross section is
0.02465 m.

• CLPT: The above five examples are recreated in terms of using shell
element (S4R) in Abaqus and the UMAT subroutine is used to apply
the in-plane nonlinear shear constitutive law in Eq. (60).

Extensional displacement boundary conditions are applied on these
virtual coupons. The predicted constitutive laws are plotted in Fig. 23.
All of the five models based on CLPT predict the same result. In light of
this fact, instead of plotting multiple overlapped curves, only one curve
representing the five cases is plotted in Fig. 23 and marked by the le-
gend CLPT. VABS – Thin Rectangle, VABS – Thin Circular, and VABS –

ASTM D3518 agree with CLPT, while VABS – Thick Square and VABS –
Thick Circular coupons deviate from CLPT. It is worth to notice that in
the VABS – Thick Circular case, there is a coupling between the ex-
tension and the twisting. In light of this, a twisting moment is also
predicted under the axially extensional displacement boundary condi-
tions. This coupling behavior reduces to a negligible value along with
the increasing of the radius-thickness ratio in the VABS – Thin Circular
case.

The 3D stress fields of the ASTM D3518 virtual coupon predicted by
VABS are plotted in Fig. 24. Firstly, the plane stress assumption is valid
only if the layer is arranged as homogeneous as possible, and the layer
width is large enough compared to the layer thickness. In this situation,
the free-edge stress will be confined in a relatively small cross-sectional
area so that its effects on the global force-displacement law can be
reasonably neglected. As shown in Fig. 25, the in-plane stress compo-
nents (from the location centered in the cross section) predicted from
VABS – ASTM D3518 are compared to the in-plane stress values pre-
dicted by CLPT. The agreement is good. Under the in-plane shear
nonlinearity, σ11 and σ22 are also in nonlinear relations with respect to
the beam axial strain γ . Secondly, the plane stress assumption made in a
calibration study is not adaptable in the structural simulation when the
layers are not arranged as homogeneous as possible, or the width is not
large enough compared to the thickness, for example, the case of VABS
– Thick Square. Although the plane stress assumption is successful in
some specific scenarios, the out-of-plane stresses will become critical
when the damage and the delamination are considered.

4. Conclusions

The present theory provides an efficient high-fidelity approach for
general predictions of nonlinear shear constitutive laws of composites
in beams. By comparison with the predictions from 3D FEA, the non-
linear 1D constitutive relations and 3D stress fields including the free-
edge effects are proven to be rigorously captured by the present theory
and the computational cost is effectively reduced. Limitations of using
the plane stress assumption to calibrate the nonlinear material model is
examined. The results show that using the 1D beam constitutive laws
predicted by VABS the nonlinear 3D material models can be econom-
ically calibrated by data-matching the experimental measurements
from slender coupons.
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Appendix A. Local stress fields of bending and twisting examples

Consider the bending deformation. The stresses predicted by VABS and 3D FEA are contour-plotted and compared in Figs. 26–31. For the twisting
example, nontrivial stresses under twisting are plotted in Figs. 32–34. The kinematical couplings on the beam end sections and the approximations of
κ1 and κ2 in 3D FEA cause the differences. However, good agreement between VABS and 3D FEA can be seen from the plots.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.engstruct.2017.10.051.
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