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y1 axis to remove the rigid rotations aroundy3 andy2, respectively, and constraining
the third DOF of a different node alongy2 axis to remove rigid rotation aroundy1.

4. Solve the boundary value problem.

5. Compute the average of the strain field within the RVE and the six components of the
average strain are the first column of the effective compliance matrix.

To compute the complete effective compliance matrix, we have to let one of the stress com-
ponents to be 1 and all other components to be zero in turn. A total of six such numerical
analyses are needed.

Theperiodic boundary conditions(PBCs) are given in terms of

t+i = −t−i χ+
i = χ−

i (5.104)

where

χi = ui − yjε
0
ij (5.105)

denoting the displacement fluctuation functions and superscripts+ and− denote the quan-
tities on the corresponding periodic boundaries. Basically PBCs require that the tractions
on the corresponding periodic boundaries equal and opposite in directions, and displace-
ment fluctuation functions equal to each other on the corresponding periodic boundaries.
It can be shown as follows that PBCs will vanish the surface integral in Eq. (5.11)
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due to the fact that the tractions are opposite to each other and the fluctuation functions
are equal to each other as required in Eq. (5.104). Thus PBCs satisfy the Hill-Mandel
macrohomogeneity condition. It can also be shown that the average strain field within the
RVE will be equal toε0ij as follows:
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due to the periodicity of the displacement fluctuation functions.
It is proven that KUBCs and SUBCs lead to upper and lower estimates of the effec-

tive properties, respectively, compared to PBCs. Predictions using KUBCs and SUBCs
converge to those of PBCs with increasing RVE sizes [33, 34, 35]. It is also theoreti-
cally justified and numerically confirmed that PBCs provide the most reasonable estimates
among the class of possible boundary conditions satisfyingthe Hill-Mandel macrohomo-
geneity condition [36]. In other words, PBC is the best boundary conditions to use for
the RVE analysis. As most FEA is displacement based, only thethe displacement fluctua-
tion functions are required to be periodic and the periodic traction boundary conditions are
automatically satisfied for a fine enough mesh with convergedstress results. PBCs were
originally given in [33]. However, PBCs are not extensivelyused in the RVE analysis using
commercial FEA software until the recent arrival of coupledequation constraints in these
software packages which enables convenient application ofthese conditions.



272 MICROMECHANICS

In summary, substituting the constitutive relations in Eq.(5.8) along with the infinites-
imal strain definition into Eq. (5.3), we can obtain the following displacement-based
formulation for the RVE analysis

(Cijkluk,l),j = 0 (5.108)

subject to boundary conditions
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PBCs in Eq. (5.109) can be written explicitly for the RVE shown in Figure 5.6. For example
for the periodic boundary surfaces normal toy1, we will have the following relations for
u1 on both surfaces
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which implies the following

u+1 − u−1 = dε011 + (y+2 − y−2 )ε
0
12 + (y+3 − y−3 )ε

0
13 (5.111)

We need to create a periodic finite element mesh so that there are corresponding nodes
on periodic surfaces. In other words, for a node ony1 = d

2 surface with coordinate
(y+2 , y

+
3 ), there is a corresponding node ony1 = − d

2 with the same coordinates so that
y−2 = y+2 , y

−
3 = y+3 . Then the periodic constraints in Eq. (5.111) can be simplified to be

u+1 − u−1 = dε011 (5.112)

Similarly, we can write all the other constraints. The constraints relating the surfaces at
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To carry out an RVE analysis using PBCs, one normally followsthe following steps
after creating a periodic finite element mesh.

1. Set one component inε0ij to be 1 and all the other components to be zero. Say for
exampleε011 = 1 andε022 = ε033 = 2ε012 = 2ε013 = 2ε023 = 0.

2. Apply PBCs to the RVE according to Eq. (5.109). One can refer to the explicit ex-
pressions above for the corresponding nonzero strain component.

3. One also needs to remove the three translational rigid body motion by constraining
three DOFs of an arbitrary node.

4. Solve the boundary value problem.

5. Compute the average of the stress field within the RVE and the six components of the
average stress are the first column of the effective stiffness matrix.

To compute the complete effective stiffness matrix, we haveto let one of the strain com-
ponents to be 1 and all other components to be zero in turn. A total of six such numerical
analyses are needed.

The effective properties computed by the RVE analysis can beused for the macroscopic
analysis. After the macroscopic analysis, one can also perform a dehomogenization anal-
ysis to obtain the local strain and stress field for any material point of interest using the
global strainε̄ij or σ̄ij calculated by the macroscopic analysis. For both KUBCS and
PBCs, we can provide the global strains as inputs for the dehomogenization analysis to
compute the local strain and stress fields within the RVE. ForSUBCs, we need to provide
the global stresses as inputs for the dehomogenization analysis to compute the local strain
and stress fields. It is noted that in the dehomogenization analysis, a complete global strain
or stress state (all components are nonzero) can be applied to predict the local fields using
the same type of boundary conditions by plugging the actual values of the global strain or
stress fields into Eq. (5.102), (5.103), or (5.109).

5.8.2 Mathematical homogenization theory

Mathematical homogenization theory (MHT), also called asymptotic homogenization the-
ory, despite its arcane mathematical derivation, is another popular micromechanics method.
It is an application of the formal asymptotic method througha two-scale formulation
[37, 16]. Its application in engineering has been popularized by its implementation us-
ing the finite element method [38, 18, 39, 19]. Although it wasoriginally developed for
periodic media formed by unit cells, it can be applied to RVEsbecause the material must
be locally periodic for us to replace it with an effective homogenous material in the macro-
scopic structural analysis. For periodic media, the unit cell can be chosen as an RVE. In
fact, it will be shown later that MHT is exactly the same as theRVE analysis with peri-
odic boundary conditions. Thus, we will use the RVE only in later derivations with the
understanding that the RVE is chosen to be a unit cell for a periodic material.

The two-scale formulation assumes that a field function of the original structure can be
generally written as a function of the macro coordinatesxk and the micro coordinatesyj .
Following [16], the partial derivative of a functionf(xk, yj) can be expressed as
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