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y1 axis to remove the rigid rotations aroupglandys, respectively, and constraining
the third DOF of a different node along axis to remove rigid rotation around.

4. Solve the boundary value problem.

5. Compute the average of the strain field within the RVE ardstk components of the
average strain are the first column of the effective compbkamatrix.

To compute the complete effective compliance matrix, weshavet one of the stress com-
ponents to be 1 and all other components to be zero in turntahdbsix such numerical
analyses are needed.

Theperiodic boundary condition@BCs) are given in terms of

th = —t- T =x (5.104)

where
Xi = Ui — yjé‘%- (5.105)

denoting the displacement fluctuation functions and sepipts+ and— denote the quan-

tities on the corresponding periodic boundaries. BasidaBCs require that the tractions
on the corresponding periodic boundaries equal and ompiosdirections, and displace-
ment fluctuation functions equal to each other on the coamrding periodic boundaries.
It can be shown as follows that PBCs will vanish the surfategral in Eq. (5.11)
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due to the fact that the tractions are opposite to each offtethee fluctuation functions
are equal to each other as required in Eq. (5.104). Thus PBiE$ysthe Hill-Mandel

macrohomogeneity condition. It can also be shown that tkesge strain field within the
RVE will be equal toe}; as follows:

Eij = (gi5) = <%(Ui,j + Uj.,i)> = <%(€?j +egi + Xig + Xj,z')>
1 (5.107)
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due to the periodicity of the displacement fluctuation fiorcs.

It is proven that KUBCs and SUBCs lead to upper and lower edgémof the effec-
tive properties, respectively, compared to PBCs. Prexistusing KUBCs and SUBCs
converge to those of PBCs with increasing RVE sizes [33, 34, & is also theoreti-
cally justified and numerically confirmed that PBCs provide inost reasonable estimates
among the class of possible boundary conditions satisfyiadHill-Mandel macrohomo-
geneity condition [36]. In other words, PBC is the best bamdonditions to use for
the RVE analysis. As most FEA is displacement based, onlihtheisplacement fluctua-
tion functions are required to be periodic and the periagiction boundary conditions are
automatically satisfied for a fine enough mesh with convesgesbs results. PBCs were
originally given in [33]. However, PBCs are not extensiveded in the RVE analysis using
commercial FEA software until the recent arrival of coupdephation constraints in these
software packages which enables convenient applicatitimese conditions.
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In summary, substituting the constitutive relations in £g8) along with the infinites-
imal strain definition into Eq. (5.3), we can obtain the fallng displacement-based
formulation for the RVE analysis

(Cijriug,) ;=0 (5.108)

subject to boundary conditions

(ui — ;%) " = (ui — yse%) (5.109)

PBCsin Eq. (5.109) can be written explicitly for the RVE shmaw Figure 5.6. For example
for the periodic boundary surfaces normabtq we will have the following relations for
u; on both surfaces

+ —
(u1 - y15(1)1 - y25(1J2 - y35(1J3) = (Ul - y15(1J1 - y25(1J2 - 3/35(1)3) (5.110)
which implies the following

uf —uy =dely + (Y3 — w3 )ely + (u3 — vz )els (5.111)
We need to create a periodic finite element mesh so that thereocaresponding nodes
on periodic surfaces. In other words, for a noden= g surface with coordinate
(y4,y4), there is a corresponding node gn = —%’ with the same coordinates so that
Y5 = Y4 ,Y5 = Y5 . Then the periodic constraints in Eq. (5.111) can be sineglifo be

uf —uy =de, (5.112)

Similarly, we can write all the other constraints. The coaists relating the surfaces at
y1 = 2 andy; = —4 are

d d
U1(§7927y3) - ul(—§7y25y3) =deY,
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U2(§7927y3) - u2(—§,y2,y3) = deh;
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The constraints relating the surfacegat= % andys = —% are
l l 0
ur(yr, §,y3) —u1(y1, —§,y3) = lelq
l l
us(y1, §,y3) —u2(y1, —§,y3) =1&%,
l

l
us(y1, §,y3) —us(y1, —5,y3) = ledy

The constraints relating the surfacegat= % andy; = — 2 are
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h h
u2 (Y1, Y2, 5) — u2(y1, Y2, —5) = hel,

h h
uz(y1, Y2, 5) — us(y1, Y2, —5) = hely
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To carry out an RVE analysis using PBCs, one normally folldles following steps
after creating a periodic finite element mesh.

1. Set one component 'Er?j to be 1 and all the other components to be zero. Say for
examplesd; = 1 anded, = ey = 269, = 29, = 2¢9, = 0.

2. Apply PBCs to the RVE according to Eq. (5.109). One canrrefehe explicit ex-
pressions above for the corresponding nonzero strain coemto

3. One also needs to remove the three translational rigi¢t buation by constraining
three DOFs of an arbitrary node.

4. Solve the boundary value problem.

5. Compute the average of the stress field within the RVE amgithcomponents of the
average stress are the first column of the effective stiffimesstrix.

To compute the complete effective stiffness matrix, we hHavet one of the strain com-
ponents to be 1 and all other components to be zero in turntahdbsix such numerical
analyses are needed.

The effective properties computed by the RVE analysis carsbd for the macroscopic
analysis. After the macroscopic analysis, one can als@parh dehomogenization anal-
ysis to obtain the local strain and stress field for any malt@oint of interest using the
global straing;; or &;; calculated by the macroscopic analysis. For both KUBCS and
PBCs, we can provide the global strains as inputs for the melgenization analysis to
compute the local strain and stress fields within the RVE.SWBCs, we need to provide
the global stresses as inputs for the dehomogenizatiogsasab compute the local strain
and stress fields. It is noted that in the dehomogenizatialysis, a complete global strain
or stress state (all components are nonzero) can be applprédict the local fields using
the same type of boundary conditions by plugging the actalales of the global strain or
stress fields into Eq. (5.102), (5.103), or (5.109).

5.8.2 Mathematical homogenization theory

Mathematical homogenization theory (MHT), also callednagiotic homogenization the-
ory, despite its arcane mathematical derivation, is amgtbyular micromechanics method.
It is an application of the formal asymptotic method throwltwo-scale formulation
[37, 16]. Its application in engineering has been popuéatiby its implementation us-
ing the finite element method [38, 18, 39, 19]. Although it veaiginally developed for
periodic media formed by unit cells, it can be applied to RWesause the material must
be locally periodic for us to replace it with an effective hmgenous material in the macro-
scopic structural analysis. For periodic media, the urltaa be chosen as an RVE. In
fact, it will be shown later that MHT is exactly the same as RWE analysis with peri-
odic boundary conditions. Thus, we will use the RVE only itetaderivations with the
understanding that the RVE is chosen to be a unit cell for mgrermaterial.

The two-scale formulation assumes that a field function efdhginal structure can be
generally written as a function of the macro coordinatgsind the micro coordinates.
Following [16], the partial derivative of a functiof(xy, y;) can be expressed as

0 L Yi 0 Ui 10 L Yi 1
f(;;l ) = f(;;l ) |yj:const+ g%hk:constf fi + gf,z‘ (5.113)






