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1 Introduction

VABS (Variational Asymptotic Beam Sectional Analysis) is a code implementing the various beam
theories1,2, 3, 4, 5, 6, 7, 8 based on the concept of simplifying the original nonlinear three-dimensional
(3D) analysis of slender structures into a two-dimensional (2D) cross-sectional analysis and a one-
dimensional (1D) nonlinear beam analysis using a powerful mathematical method, the variational
asymptotic method.9 VABS takes a finite element mesh of the cross section including all the de-
tails of geometry and material as inputs to calculate the sectional properties including structural
properties and inertial properties. These properties are needed for the 1D beam analysis to predict
the global behavior of the slender structure. The 3D pointwise displacement/strain/stress distribu-
tion within the structure can also be recovered based on the global behavior of the 1D beam analysis.

Since most of the theoretical details are presented in pertinent papers and collected in the book
by Prof. Hodges,10 this manual will only serve to help readers get started using VABS to solve
their own composite beam problems. This manual addresses the history of the code, its features,
functionalities, conventions, inputs, outputs, maintenance, and tech support.

2 VABS History

The research project that gave birth to VABS was initiated by Prof. Dewey Hodges when he was
first introduced to the variational asymptotic method by Prof. Berdickevsky at Georgia Tech in 1989
and has been ongoing ever since till the time of writing. The program name VABS first appeared
in [11]. The original version of VABS was a research code written in Fortran 77 by Prof. Cesnik.
Although the current version of VABS is a completely rewritten code, it is important to note that
the original version laid an able foundation for the present code and facilitated its development.
The fall semester of 1998, when Prof. Yu began his graduate study at Georgia Tech, marked the be-
ginning of the transition of VABS from a research code to a production design and analysis tool for
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practicing engineers. The code was rewritten from scratch in Fortran 90/95, with all unnecessary
restrictions eliminated, and the computing and memory efficiency greatly enhanced. At the same
time, Prof. Censik was continuing his work on VABS for piezoelectric materials at MIT and later
at University of Michigan. And Prof. Yu continues his work on VABS for multiphysics modeling
at Utah State University. For this reason, there are two variants of VABS: the Georiga Tech/Utah
State VABS, released and maintained by Profs. Yu and Hodges, and UM/VABS, released and
maintained by Prof. Cesnik. From henceforth in this manual the term VABS will refer only to
the Georgia Tech/Utah State VABS, and what follows is only applicable to this code. Many re-
searchers and engineers all over the world are actively using VABS which is becoming the standard
tool for design and analysis of composite slender structures such as helicopter rotor blades, wind
turbine blades, high aspect ratio wings, composite bridges, and other slender structural components.

VABS II was released in June 2004, with the major enhancement to remove the need of asking
the user to choose arbitrary point constraints and let the code determine the singularity and apply
the corresponding constraints. Other improvements of VABS II include calculation of principal
inertial axes, the generalized mass matrix, and neutral axes, and significant reduction of the com-
puting time for large size problems.

3 What is New in VABS 3.4

The current version of VABS is VABS 3.4. The main new feature is for expanding
√
g in the mod-

eling for initially curved/twisted beams. For some cases such a change made significant differences
for obtaining first and second correction of the stiffness matrix due to initial curvature and twist.
Such a change is verified using an initially curved strip for which an elasticity solution is obtainable.
The input file for this case is isorectTrif2.dat. A 64-bit version of VABS is also available since VABS
3.4.

4 What is New in VABS 3.3

The current version of VABS is VABS 3.3. The main new feature is introducing a new input
format, and keeping the previous input format as optional. In the new format, the user only needs
to provide one real number for θ1 as few users take advantage of the nine real numbers for θ1, which
is useful for elements with highly curved edges. In the new format, we introduce layer definition
so that a layer type instead of material type is provided for each element. Each layer is defined
through a unique combination of material type and layerup angle θ3. It is more economical than
assigning θ3 for each element, as what we have done in previous format, because the number of
layers usually is much less than the number of elements. These two changes reduce approximately
3/4 of real numbers needed for VABS inputs, saving space and time. These changes will also
simplify the development of VABS preprocessors as it is easier to calculate just one number for θ1
for each element and programs flows better with the newly introduced layer definitions.
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5 VABS III and What is New

VABS was originally designed to run as a stand alone code and its error handling, memory
allocation/de-allocation, and I/O were handled with this use in mind. However, in recent years,
more and more users began to explore the possibility of using VABS in a design environment. This
motivates the major upgrade of VABS to VABS III through restructuring the code.

Since the first release of VABS III, a few users have asked the difference between VABS III and
previous versions, in particular VABS 2.1.1 which was the last release and the code accompanying
Prof. Hodges’ book.10 Overall, VABS III is a much improved code in both accuracy and efficiency.
The main difference can be described according to the following two aspects.

• As far as functionalities concerned, VABS 3.2

1. Uses the correct constraints so that it can reproduce the 3D elasticity theory for isotropic
prismatic beams. This change affects the warping functions, and affects all stiffness
models except the classical one. Such a correction enables VABS to reproduce the 3D
elasticity theory for isotropic prismatic beams and thus enables VABS to provide a better
modeling for prismatic or initially curved/twisted composite beams (VABS 3.0).

2. Recovers 3D stress/strain fields at each node in addition to the Gauss points. The
recovered 3D stress/strain fields are expressed in both the beam coordinate system and
the material coordinate system. VABS 2.1.1 only recovers 3D stress/strain fields at the
Gauss points expressed in the beam coordinate system. For visualization, nodal values
are convenient. To apply failure criterion, values expressed in the material coordinate
system are necessary (VABS 3.0).

3. Handles isotropic, orthotropic, and anisotropic material differently. Previous versions
treat all materials as orthotropic and only and must take a total of 9 elastic constants.
VABS III allows general anisotropic material with as many as 21 elastic constants and
isotropic materials with as few as 2 elastic constants (VABS 3.0).

4. Can model hygrothermal effects of composite beams due to temperature and moisture
changes. As a companion capability, VABS Conduction is developed to carry out a di-
mensional reduction for the 3D conduction problem. VABS Conduction can be requested
separately (VABS 3.1).

5. Updates the transformation procedure into the Timoshenko model from the asymptotic
energy. A new perturbation method is developed to capture the effects due to initial
curvatures/twist during the transformation. The prediction for Timoshenko stiffness is
generally improved, even for some prismatic beams (VABS 3.2).

6. Outputs the average of 3D stresses/strains within each element for convenience of post-
processing (VABS 3.2.2).

7. Provides an option for recovering the 3D displacement/strain/stress fields based on linear
beam theory (VABS 3.2.4).

• As far as the quality of the code concerned, VABS 3.2
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1. Is restructured to change the error handling and error message handling, memory alloca-
tion and de-allocation, and I/O handling to facilitate its integration with other software
environments (VABS 3.0).

2. Interprets and echoes all the input data for quicker identification of mistakes in the input
file (VABS 3.0).

3. Is much faster than VABS 2.1.1 by modifying the mesh optimization algorithm and
adopting a new approach to calculate the elemental finite element matrices. For a
realistic blade section with 200,000 DOFs, VABS 3.0 runs 2 minutes and 2 seconds
while VABS 2.1.1 runs 7 minutes 35 seconds on a Dell XPS M1330 laptop. (VABS 3.0)

4. Uses dynamic link libraries (DLLs) to encapsulate the analysis capability so that VABS
has true plug-n-play capability which is convenient for integration into other environ-
ment. Now VABS can be used both as a standalone application and two callable libraries.
A VABS manual for developers can be requested separately (VABS 3.0).

5. Has more thorough and informative error handling (VABS 3.0).

6. Uses a simplified license mechanism (VABS 3.2.1)

Quite a few bugs in VABS 2.1.1 have been corrected in VABS III and its later versions. One bug
is associated with the modified linear solver. Because of this bug, for some very rare cases, VABS
2.1.1 provides some annoying couplings which are not supposed to be there. VABS 3.0 has no such
anomaly. At least one bug related with the Trapeze effect inherited from the original VABS before
1998 has been corrected in VABS 3.0. A bug related with recovery is also corrected in VABS 3.2.3.

And starting from VABS 3.0, an evaluation version of VABS is free for anybody who asks.
It allows the user to evaluate the code for one month before obtaining a permanent license. Also
starting from VABS III, an limited version of VABS, VABS Lite, is provided as a freeware for
interested users such as students or engineers with limited resources who are not using VABS for
real industrial problems.

6 Why VABS Lite

Since January 2006, VABS has been commercialized by Utah State University along with Georgia
Institute of Technology. This creates difficulty for some VABS users, such as students using VABS
for their studies or engineers using VABS for not-work-related problems. To meet this need, we are
committed to develop VABS Lite for each new release as freeware available to all interested users.
VABS Lite is a limited version of VABS which is capable of classical and Timoshenko modeling of
prismatic beams. VABS Lite can model cross section with up to 500 nodes and whatever number
of elements formed by the limited number of nodes.

7 VABS Features

Hence along with the features of previous versions, the most recent version of VABS, VABS 3.3,
has the following features:
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1. It is a highly modularized code written in Fortran 90/95. All the problem-dependent arrays
are allocated dynamically during run time, and the user can use all the memory up to the
limit of the machine. All the outstanding abilities of array handling in Fortran 90/95 have
been exploited.

2. It adopts highly efficient techniques to reduce the requirement of RAM and increase the
computational efficiency. Now cross sections as complex as real composite rotor blades with
hundreds of layers can be easily handled by a laptop computer.

3. It has a general element library that includes all the typical 2D elements such as 3, 4, 5,
6-noded triangular elements and 4, 5, 6, 7, 8, 9-noded quadrilateral elements. Users are free
to choose the type of elements, and different types of elements can be mixed within one mesh,
if necessary.

4. It can deal with arbitrary layups. Users can provide one parameter for the layup orientation
and one parameter for the ply orientation to uniquely specify the material system in the
global coordinate system. Nine parameters can be used for the ply orientation if a ply is
highly curved and the ply angle is not uniform within an element.

5. It detects singularities and properly removes them to render the solution as a true represen-
tation of the theory. Older versions before VABS II dealt with them approximately by asking
the users to input four constraints on three distinct, user-specified nodes. The arbitrariness of
the older approach can affect the refined models, and sometimes may even render the linear
system unsolvable.

6. It applies the four constraints on the warping functions in such a way that the 3D elastic-
ity solution can be reproduced for isotropic beams, correcting a mistake related with these
constraints in previous versions.

7. It does not require the beam reference line to be the locus of cross-sectional area centroids.
VABS can calculate the centroid for any arbitrary cross section, and users can choose their
own reference line for the convenience of the 1D global beam analysis.

8. It can deal with isotropic materials, orthotropic materials, and general anisotropic materials,
while all the old versions treat all materials as orthotropic.

9. It can be quickly and conveniently integrated with other environments such as computer-
aided design environments, multidisciplinary optimization environments, or commercial finite
element packages.

8 VABS Functionalities

VABS is a versatile cross-sectional analysis tool and can obtain all the useful information related
with beam sections. Specifically, VABS 3.2 has the following functionalities:

1. Calculate the 6×6 cross-sectional mass matrix, written in terms of the mass per unit length,
and the first and second distributed mass moments of inertia about the three axes. Based on
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the information provided by the mass matrix, VABS calculates the cross-sectional center of
mass, the inertial principal axes, the principal mass moments of inertia, and the mass-weighted
radius of gyration.

2. Construct the classical model, represented by a 4×4 stiffness matrix for prismatic or initially
curved/twisted composite beams with normal or oblique cross sections. Based on the classical
stiffness model, VABS can calculate the location of neutral axes, or so-called tension center.

3. Construct the generalized Timoshenko model, represented by a 6×6 stiffness matrix for pris-
matic or initially curved/twisted composite beams with normal cross sections. From the
generalized Timoshenko model, VABS can calculate the shear center (or elastic axis) location
for arbitrary sections.

4. Construct the generalized Vlasov model, represented by a 5×5 stiffness matrix for prismatic
or initially curved/twisted composite beams with normal cross sections, which is important
for thin-walled beams with open sections.

5. Incorporate the trapeze effect, a nonlinear effect in the 1D constitutive law that stems from
3D geometrical nonlinearity, a very important effect for beams under large centrifugal forces.
The composite beam could be either prismatic or initially twisted and curved.

6. Recover 3D pointwise displacement, strain, and stress fields for the global behavior of a 1D
global beam analysis using the classical model, the generalized Timoshenko model, or the
generalized Vlasov model. Multiple recovery runs can be performed for different inputs of
stress resultants without repeating the cross-sectional analysis. The recovered stress/strain
fields are evaluated both at the nodal positions and Gaussian points. They are expressed in
both the material coordinate system and the beam coordinate system.

7. Can model hygrothermal effects of composite beams due to temperature and moisture changes.
As a companion capability, VABS Conduction is developed to carry out a dimensional reduc-
tion for the 3D conduction problem, which can be requested separately.

Note only a subset of aforementioned functionalities are enabled in VABS Lite including classical
model and generalized Timoshenko model for prismatic beams with normal cross sections and the
corresponding recovery capabilities.

9 VABS Conventions

To understand the inputs and interpret outputs of the program correctly, we need to explain some
conventions used by VABS.

First, VABS uses a right hand system, the beam coordinate system, denoted as x1, x2 and x3,
where x1 is along the beam axis and x2 and x3 are the local Cartesian coordinates of the cross
section, see Figure 1 for a beam with an arbitrary cross section. Usually, for rotor blades, x1 is
along the direction of the span and points to the tip, x2 is along the direction of the leading-edge
to the trailing edge and points to the direction of the leading edge, and x3 can be determined
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Figure 1: VABS beam coordinate system

by the right hand rule. Usually the origin of x1 is located at the root of the blade, yet the user
is free to choose the origin of x2 and x3 at an arbitrary point of the cross section, such as the
mass center, centroid, or shear center. Detailed information is needed to define the cross-sectional
geometric domain spanned by x2 and x3 and the materials that occupy that domain. Also, certain
characteristics along the span direction, such as initial curvature/twist or taper, are needed for
cross-sectional analyses when they are not equal to zero. The obliqueness should be specified when
the angle between x1 and the x2-x3 plane is not equal to 90◦, that is, when reference cross section
is not normal to the reference line, such as the case of a swept wing. It is noted that the beam
coordinate system is the same as the undeformed beam coordinate system b defined in Ref. [10].
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Figure 2: VABS triangular element node numbering and corresponding integration schemes

Second, VABS numbers the nodes of each element in the counterclockwise direction, as shown
in Figure 2 for triangular elements and Figure 3 for quadrilateral elements. Nodes 1, 2, and 3 of the
triangular elements and nodes 1, 2, 3, and 4 of the quadrilateral elements are at the corners. Nodes
5, 6, 7 of the triangular elements and nodes 5, 6, 7, 8, 9 for quadrilateral elements are optional nodes.

The recovered 3D displacements are values at each node expressed in the VABS beam coordi-
nate system (Figure 1). However, stresses and strains are most accurately evaluated at Gaussian
integration points. Gaussian integration schemes for different orders of the two types of elements
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Figure 3: VABS quadrilateral element node numbering and corresponding integration schemes

are also shown in Figures 2 and 3. The red interior points correspond to the integration scheme
for linear elements and the green interior points correspond to the integration scheme for quadratic
elements. VABS can also recover 3D stresses and strains at each node as suggested by our industry
users. The recovered stresses, and strains are expressed in both the beam coordinate system and
the material coordinate system, which is essential for applying failure criteria.

Figure 4: VABS layup convention

VABS allows users to use various kinds of units. However, it is necessary to be absolutely
consistent in the choice of units to avoid errors. Particularly, users must never use the pound as a
unit of mass to avoid confusion. When pounds are used for force and feet for length, the unit of
mass must be the slug = lb-sec2/ft; if inches are used for length along with pounds for force, then
the unit of mass must be lb-sec2/in.

Finally, to understand the VABS input convention for composite layups, we need to find re-
lationships among three coordinate systems: the beam coordinate system (x1, x2, x3) used by the
user to define the geometry, the material system (e1, e2, e3) used by the user to define the material
properties, and an intermediate one to define the ply plane (y1, y2, y3). As shown in Figure 4, the
ply coordinate system (y1, y2, y3) is formed by rotating the global coordinate system (x1, x2, x3) in
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Figure 5: VABS layup convention for a box-beam

the right-hand sense about x1 by the amount 0 ≤ θ1 ≤ 360◦. Then, the ply coordinate system
(y1, y2, y3) is rotated about y3 in the right-hand sense by the amount −90◦ ≤ θ3 ≤ 90◦ to form the
material system (e1, e2, e3), the range of θ3 being same as is commonly defined in the field of the
composite materials. Here we use the box-beam section depicted in Figure 5 to illustrate VABS
layup conventions. Here, x1 is pointing toward the reader, x2 is pointing to the right side of the
reader, and x3 is pointing upward vertically. For the upper wall: θ1 = 0◦; the left wall: θ1 = 90◦;
the lower wall: θ1 = 180◦; the right wall: θ1 = 270◦. For all the walls θ3 = θ for the box-beam in
Figure 5 because all the fibers are rotating positively about y3/e3 by the angle θ. The users can
specify their own stacking sequences. The stacking sequences expressed from the innermost layer
to the outermost layer for each wall are often used.

10 VABS Inputs

Although a few preprocessors, such as PreVABS, have been developed to create VABS input files,
it is still beneficial for advanced users, particularly those who want to embedded VABS in their
familiar environment, to understand the meaning of the input data.

The first line lists two newly introduced integer flags arranged as: “format flag nlayer”. If the
first flag is 1, the input is prepared in the new format, otherwise, it is prepared in the old format.
The second integer provides the number of layers in the section. Note, here layer is defined as a
unique combination of material type and layup orientation, it does not necessarily corresponds to
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the definition used in the manufacturing sense. For example, even if a section is made of a single
isotropic material, we consider it has one layer. Hence, nlayer should be always given a value
greater than one if format flag=1. Note nlayer is not used in the old format.

The second line has three flags arranged as: “Timoshenko flag recover flag thermal flag”. The
first flag can be only 1 or 0 and the second flag can be 0, 1, or 2. Their uses are explained in the
following:

• If Timoshenko flag is 1, VABS will construct both the classical model and the generalized
Timoshenko model. If it is 0, it will only construct the classical model.

• If recover flag is 0, VABS will carry out the constitutive modeling. If recover flag is 1, VABS
will recover the 3D displacement/strain/stress fields within the cross section based on the non-
linear beam theory. If recover flag is 2, VABS will recover the 3D displacement/strain/stress
fields within the cross section based on the linear beam theory. To carry out the 3D recovery,
one should have already run VABS once to obtain the required stiffness models including
the classical model, the Timoshenko model, or the Valsov model in the full version with
corresponding warping functions stored in input file name.V0 (for the classical warping func-
tions), input file name.V1 (for the warping corrections associated with initially curved and/or
twisted beams), and input file name.V1S (for the warping corrections needed for the gener-
alized Timoshenko or Vlasov model). These warping files are written in binary form and
are not directly viewable by the end users. If reco flag is 1 or 2, additional data are needed
for inputting the global behavior corresponding to a specific 1D beam analysis, as described
later.

The third flag, thermal flag can be equal to 0 or 3. If it is equal to zero, VABS will carry out a
pure mechanical analysis. If it is equal to 3, VABS will carry out a one-way coupled thermoelastic
analysis. This flag is automatically set to be 0 in VABS Lite although the user is free to set it as
other integer value.

The third line has four flags arranged as: “curve flag oblique flag trapeze flag Vlasov flag.” These
flags can be only 1 or 0. Their uses are explained in the following:

1. To model initially curved and twisted beams, curve flag is 1, and three real numbers for the
twist (k1) and curvatures (k2 and k3) should be provided in the very next line.

2. To model oblique cross sections, oblique flag is 1, and two real numbers are needed in the
following line to specify the orientation of an oblique reference cross section, see Figure 6 for
a sketch of such a cross section. The first number is cosine of the angle between normal of the
oblique section (y1) and beam axis x1. The second number is cosine of the angle between y2

of the oblique section and beam axis (x1). The summation of the square of these two numbers
should not be greater than 1.0 in double precision. The inputs including coordinates, material
properties, etc. and the outputs including mass matrix, stiffness matrix, etc. are given in the
oblique system, the yi coordinate system as shown in Figure 6 Note that this feature is only
enabled for the classical beam model.

3. To obtain the trapeze effect, trapeze flag is 1.
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Figure 6: Sketch of an oblique reference cross section

4. To obtain a generalized Vlasov model, Vlasov flag is 1. Vlasov flag can be 1 only if Timo-
shenko flag is 1. VABS will first construct the generalized Timoshenko model, which deter-
mines the location of the generalized shear center. If the generalized shear center is not at
the origin of the beam coordinate system, VABS will move the origin of beam coordinate sys-
tem to the generalized shear center and repeat the calculation to obtain a generalized Vlasov
model.

These four flags are automatically set to be 0 in VABS Lite although the user is free to set it as as
other integer value.

The next line lists three integers arranged as: “nnode nelem nmate,” where nnode is the total
number of nodes, nelem the total number of elements, and nmate the total number of material types.

The next nnode lines are the coordinates for each node arranged as: “node no x2 x3,” where
node no is an integer representing the unique number assigned to each node and x2, x3 are two real
numbers describing the location (x2, x3) of the node. Although the arrangement of node no is
not necessary to be consecutive, every node starting from 1 to nnode should be present.

The next nelem lines list 10 integers for the nodes for each element (also known as the con-
nectivity relations). They are arranged as: “elem no node 1 node 2 node 3 node 4 node 5 node 6
node 7 node 8 node 9,” where elem no is the number of element and node i (i = 1, 2, . . . , 9) are
nodes of this element. If a node is not present in the element, the value is 0. If node 4 is 0, the ele-
ment is a triangular element; see Figures 2 and 3 for the VABS numbering convention. Although
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the arrangement of elem no is not necessary to be consecutive, every element starting
from 1 to nelem should be present.

If format I = 1, that is, if the new format is used, the next nelem lines list the layer type
and the layer plane angle (θ1) for each element as: elem no layer type θ1, where layer type is an
integer representing which layer the element elem no belongs to, and θ1 is a real number describing
the layer plane angle for the element. θ1 can be calculated at any material point belonging to the
element, such as the centroid. Although the arrangement of elem no is not necessary to
be consecutive, every element starting from 1 to nelem should be present. For isotropic
materials, θ1 will not enter the calculations.

If format I is not equal to one, that is, if the old format is used, the next nelem lines list
the material type and layup parameters for each element as: elem no material type θ3 θ1(9), where
material type is an integer representing the type of the material for the element elem no, θ3 is a
real number representing the layup angle in degrees for this element, and θ1(9) is an array storing
nine real numbers for the layer plane angles at the nodes of this element. For simplification, if the
ply orientation can be considered as uniform for this element, θ1(1) stores the layer plane angle
and θ1(2) = 540◦, and all the rest can be zeros or other real numbers because they do not enter the
calculation. If the element has fewer than nine nodes, zeros are to be input for the corresponding
missing nodes, as in the case for connectivity. Although the arrangement of elem no is not
necessary to be consecutive, every element starting from 1 to nelem should be present.
For isotropic materials, neither θ3 nor θ1(9) will enter the calculations.

If format I = 1, that is, if the new format is used, the next nlayer lines define the layers used
in the section. They are arranged as:

layer id mate type θ3
where layer id is an integer denoting the identification number for each layer, mate type is an in-
teger denoting the material type used in the layer, and θ3 is a real number denoting the layup
orientation. For example, if layer 1 is made of material 1 and having −15◦ layup, we will provide
the information as 11− 15.0

The next nmate blocks defines the material properties. They are arranged as:
mat id orth
const1 const2 ....

where mat id is the number of material type, orth is the flag to indicate whether the material is
isotropic (0), orthotropic (1) or general anisotropic (2). The rest are material constants.

For isotropic materials, orth is 0, if thermal flag is 0, there are 3 constants arranged as:
E ν
ρ

where E is the Young’s modulus, ν is the Poisson’s ratio, and ρ is the density of the material.
Poisson’s ratio must be greater than -1.0 and less than 0.5 for linearly elastic isotropic materials,
although VABS allows users to input values that are very close to those limits.
If thermal flag is 3 and orth is 0, and there are 4 constants arranged as:

12



E ν
ρ
α

where α is the coefficient of thermal expansion.

For orthotropic materials, orth is 1, if thermal flag is 0, there are 10 constants arranged as:
E1 E2 E3

G12 G13 G23

ν12 ν13 ν23

ρ
including the Young’s moduli (E1, E2, and E3), the shear moduli (G12, G13, and G23), the Poisson’s
ratios (ν12, ν13, and ν23), and the mass density (ρ). The convention of values is such that these
values will be used to form the following generalized Hooke’s law for composite materials:

ε11

2ε12

2ε13

ε22

2ε23

ε33


=



1/E1 0 0 −ν21/E2 0 −ν31/E3

0 1/G12 0 0 0 0
0 0 1/G13 0 0 0

−ν12/E1 0 0 1/E2 0 −ν32/E3

0 0 0 0 1/G23 0
−ν13/E1 0 0 −ν23/E2 0 1/E3





σ11

σ12

σ13

σ22

σ23

σ33


If thermal flag is 3 and orth is 1, and there are 13 constants arranged as:

E1 E2 E3

G12 G13 G23

ν12 ν13 ν23

ρ
α11 α22 α33

where α11, α22, α33 are the coefficients of thermal expansion along three directions.
The material constants are expressed in the material coordinate system; see Figure 4. It is also

emphasized that if the users are provided material properties in a different coordinate system, or
the arrangement of stresses and strains are different from what VABS uses, proper transformation
of the material properties is needed.

For general anisotropic materials, orth is 2, if thermal flag is 0, there are 22 constants arranged
as:

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

c55 c56

c66

ρ
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These values are defined using the following generalized Hooke’s law:

σ11

σ12

σ13

σ22

σ23

σ33


=



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66





ε11

2ε12

2ε13

ε22

2ε23

ε33


If thermal flag is 3 and orth is 2, there are 28 constants arranged as:
c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

c55 c56

c66

ρ
α11 2α12 2α13 α22 2α23 α33

where αij , with i = 1, 2, 3 and j = 1, 2, 3, are the components of the second-order tensor of the
thermal expansion coefficients. CTEs corresponding to the shear strains are multiplied by two
because the engineering shear strains are twice of the corresponding tensorial shear strains. Again,
the material constants are expressed in the material coordinate system; see Figure 4. It is also
emphasized that if the users are provided material properties in a different coordinate system, or
the arrangement of stresses and strains are different from what VABS uses, proper transformation
of the material properties is needed.

If thermal flag is equal to 3, we also need to provide the following nnode lines for tempera-
ture for each node arranged as: “node no T ,” where node no is an integer representing the unique
number assigned to each node and T is a real number describing the temperature of the node.
These temperature values can be calculated either from a 3D heat conduction analysis or using
VABS Conduction, which is a generalization of the VABS approach for heat conduction analy-
sis. VABS Conduction can be requested separately. Although the arrangement of node no is
not necessary to be consecutive, every node starting from 1 to nnode should be present.

Now, we have prepared all the inputs necessary for calculating sectional properties, that is, with
recover flag being 0.

If recover flag is 1, the user needs to provide additional information obtained from the 1D global
beam analysis in the same input file. To carry out recovery based on the classical model, VABS
requires the following data:

u1 u2 u3

C11 C12 C13

C21 C22 C23

C31 C32 C33

F1 M1 M2 M3

14



where u1, u2, and u3 are the 1D beam displacements along x1, x2, x3, respectively. The matrix Cij ,
with i = 1, 2, 3 and j = 1, 2, 3, is the direction cosine matrix defined as

Bi = Ci1b1 + Ci2b2 + Ci3b3 with i = 1, 2, 3

where B1, B2, and B3 are the base vectors of the deformed triad and b1, b2, and b3 are the base
vectors of the undeformed triad. Details of this definition can be found in Ref. [10]. ui and Cij
are needed only for recovering 3D displacements. If the user is not interested in 3D displacements,
these values can be arbitrary real numbers. F1 is the sectional axial force, M1 is the sectional
torque, M2 is the sectional bending moment around x2, and M3 is the sectional bending moment
around x3. The sectional stress and moment resultants are needed for recovering 3D stress and
strain distribution within the cross section. For example, if the user only wants to see the pointwise
stresses or strains under 1 unit compressive axial force along with 1 unit bending moment around
x2, the inputs can be arranged as:

0 0 0
1 0 0
0 1 0
0 0 1
1 0 1 0

To carry out recovery based on the generalized Timoshenko model, VABS requires the following
data:

u1 u2 u3

C11 C12 C13

C21 C22 C23

C31 C32 C33

F1 M1 M2 M3

F2 F3

f1 f2 f3 m1 m2 m3

f ′1 f ′2 f ′3 m′1 m′2 m′3
f ′′1 f ′′2 f ′′3 m′′1 m′′2 m′′3

where the additional data F2 and F3 are sectional transverse shear forces along x2 and x3, respec-
tively. f1, f2, f3 are distributed forces (including both applied forces and inertial forces) per unit
span along x1, x2, x3 respectively. m1,m2,m3 are distributed moment (including both applied and
inertial moments) per unit span along x1, x2, x3 respectively. The prime denotes derivative with
respect to beam axis, that is ()′ = ∂

∂x1
and ()′′ = ∂2

x2
1
.

To carry out recovery based on the generalized Vlasov model, VABS requires the following data:

u1 u2 u3

C11 C12 C13

C21 C22 C23

C31 C32 C33

γ̄11 κ̄1 κ̄2 κ̄3 κ̄′1 κ̄′′1

where γ̄11 is the beam axial stretching strain measure, κ̄1 is the twist measure, κ̄2 and κ̄3 are the
curvature measures around x2 and x3 respectively. It is noted that the global behavior needed for
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recovery should not violate the small strain assumption. Otherwise, you might get some unexpected
results. For example, if your transverse shear stiffness is around 2.5 N., then input a shear force
resultant of 1 N might be too large as the shear strain is 0.4, which cannot be considered as small.

The input file should be ended with a blank line to avoid any possible incompatibility of different
computer systems. The input file can be given any name as long as the total number of the
characters of the name including extension is not more than 60. You are suggested to use a unique
extension say vab for you to identify such files with VABS. For the convenience of the user to
identify mistakes in the input file, all the inputs are echoed in a file named input file name.ech.
Error messages are also written at the end of input file name.ech.

11 VABS Outputs

Sectional properties obtained by VABS are stored in input file name.K. Some results are listed
as scalars, and some are listed as matrices. Typical scalar results include the mass center, the
principal axes, the geometric center, the neutral axes (or tension center), and the elastic axis (or
shear center). Typical matrix results include the cross-sectional mass and stiffness matrices of
the classical model, the cross-sectional stiffness matrix of the generalized Timoshenko model, the
cross-sectional stiffness matrix of the generalized Vlasov model, and the cross-sectional stiffness
matrix considering the trapeze effect. The corresponding flexibility matrices are also provided in
the output file. These values are all expressed with respect to the beam coordinate system chosen
by the user except when the Vlasov flag is equal to 1, the sectional values are expressed with respect
to the shear center, although the shear center is still expressed with respect to the user coordinate
system. The definitions of these properties are briefly summarized here for the convenience of end
users. For more details, please refer to VABS related publications.

The elements of the mass matrix are arranged as

µ 0 0 0 µxm3 −µxm2

0 µ 0 −µxm3 0 0
0 0 µ µxm2 0 0
0 −µxm3 µxm2 i22 + i33 0 0

µxm3 0 0 0 i22 i23

−µxm2 0 0 0 i23 i33


where µ is mass per unit length, (xm2, xm3) is the location of mass center, i22 is the mass moment
of inertia about x2 axis, i33 is the mass moment of inertia about x3 axis, i23 is the product of
inertia. VABS also calculates the mass matrix at the mass center, and the principal mass moments
of inertia and principal inertial axes following standard formulas in textbooks on dynamics. With
the knowledge of mass center and principal inertial axes, VABS outputs the mass per unit span,
mass moments of inertia about x1, x2, x3, and mass-weighted radius of gyration, the square of which
is the sum of the two in-plane cross-sectional mass moments of inertia (which just happens to be
the mass moment of inertia around x1) divided by the mass per unit span.
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The geometric center of the cross section is defined as:

Xg2 =
< x2 >

< 1 >
Xg3 =

< x3 >

< 1 >

where < · >=
∫ ∫
·dx2dx3. Please noted that only the geometry occupied by a material enters the

integration.

The 4×4 stiffness matrix is used to expressed the following constitutive relation for the classical
beam model: 

F1

M1

M2

M3

 =


S̄11 S̄12 S̄13 S̄14

S̄12 S̄22 S̄23 S̄24

S̄13 S̄23 S̄33 S̄34

S̄14 S̄24 S̄34 S̄44




γ̄11

κ̄1

κ̄2

κ̄3

 ≡ S̄


γ̄11

κ̄1

κ̄2

κ̄3


The neutral axes or the tension center (Xt2, Xt3) is defined as the point of the cross section through
which no bending deformation will occur when an axial force applied at this point. The stiffness
constants S̄ij depend on the choice of the beam coordinate system, initial curvature/twist, as well
as the geometry and material of the cross section. For prismatic beams made of isotropic material
with the beam reference line located at the tension center and x2 and x3 aligned with the principal
bending axes, the stiffness matrix is a diagonal matrix as follows:

EA 0 0 0
0 GJ 0 0
0 0 EI2 0
0 0 0 EI3


the diagonal terms of which are the well known engineering beam constants. For prismatic beams
made of isotropic material with the beam reference line not at the tension center and x2 and x3

not aligned with the principal bending axes, the stiffness matrix will look like:
EA 0 S3 −S2

0 GJ 0 0
S3 0 EI2 −EI23

−S2 0 −EI23 EI3


with Sα =< Exα > and EI23 =< Ex2x3 >.

If thermal flag is equal to 3, VABS also output 1D nonmechanical stress resultants (N̄T , a 4× 1
matrix) and thermal strains (ε̄T , a 4× 1 matrix) due to temperature for the classical beam model
as 

F1

M1

M2

M3

 = S̄


γ̄11

κ̄1

κ̄2

κ̄3

− N̄T

and ε̄T = S̄−1N̄T .
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The 6× 6 stiffness matrix is used to expressed the following constitutive relation for the gener-
alized Timoshenko model:

F1

F2

F3

M1

M2

M3


=



S11 S12 S13 S14 S15 S16

S12 S22 S23 S24 S25 S26

S13 S23 S33 S34 S35 S36

S14 S24 S34 S44 S45 S46

S15 S25 S35 S45 S55 S56

S16 S26 S36 S46 S56 S66





γ11

2γ12

2γ13

κ1

κ2

κ3


= S



γ11

2γ12

2γ13

κ1

κ2

κ3


where 2γ12 and 2γ13 are the engineering transverse shear strains. The generalized shear center
or elastic axis (Xs2, Xs3) defined as the point of the cross section through which no torsion will
occur directly due to the sectional transverse shear forces. It is noted that the barred quantities
γ̄11, κ̄1, κ̄2, κ̄3 relate to their unbarred counterparts as (̄) = ()|2γ12=2γ13=0.

For initially curved and twisted beams, there are two 4 × 4 stiffness matrix for the classical
model. The first classical stiffness matrix corresponds to the zeroth-order strain energy. The sec-
ond classical stiffness matrix (correct up to the second order) corresponds to the second-order strain
energy with respect to the small parameter related with initial twist/curvatures.

The 5× 5 stiffness matrix is used to expressed the following constitutive relation for the gener-
alized Vlasov model: 

F1

M1

M2

M3

Mω

 =


Ŝ11 Ŝ12 Ŝ13 Ŝ14 Ŝ15

Ŝ12 Ŝ22 Ŝ23 Ŝ24 Ŝ25

Ŝ13 Ŝ23 Ŝ33 Ŝ34 Ŝ35

Ŝ14 Ŝ24 Ŝ34 Ŝ44 Ŝ45

Ŝ15 Ŝ25 Ŝ35 Ŝ45 Ŝ55




γ̄11

κ̄1

κ̄2

κ̄3

κ̄′1


where Mω is so-called bi-moment corresponding to the twist rate κ′1. Ŝ55 is the commonly called
“restrained warping” constant, although the complete 5× 5 matrix is needed for composite beams
with significant restrained warping effects. For thin-walled beams with open sections, it is mean-
ingful to have a generalized Vlasov model based on choosing shear center as its reference. Hence to
obtain a generalized Vlasov model, VABS finds the shear center first and then shifts the origin of
the coordinate system to the shear center and calculate the 5×5 stiffness matrix. It is noted that
bars or hats are put over the stiffness constants for different models to indicate the fact that they
are not necessarily the same.

The trapeze effect is important for torsionally soft rotating beams. The most general form of a
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1D constitutive model including trapeze effect can be represented in the following strain energy

U =
1
2



γ11

2γ12

2γ13

κ1

κ2

κ3



T 

S11 S12 S13 S14 S15 S16

S12 S22 S23 S24 S25 S26

S13 S23 S33 S34 S35 S36

S14 S24 S34 S44 S45 S46

S15 S25 S35 S45 S55 S56

S16 S26 S36 S46 S56 S66





γ11

2γ12

2γ13

κ1

κ2

κ3


+


γ̄11

κ̄1

κ̄2

κ̄3


T

(γ11Aγ + κ1Bκ1 + κ2Cκ2 + κ3Dκ3)


γ̄11

κ̄1

κ̄2

κ̄3


where Aγ , Bκ1 , Cκ2 , Dκ3 can be found in VABS output file if trapeze flag is equal to 1.

The recovered 3D displacement results are stored in input file name.U. The values are listed for
each node identified by its location as: “x2 x3 U1 U2 U3,” where x2 and x3 are the coordinates of
the node, Ui the recovered 3D displacements at this node, expressed in the beam coordinate system.

The recovered 3D strain results are stored in input file name.E. The values are listed for each
Gaussian point identified by its location as: “x2 x3 ε11 2ε12 2ε13 ε22 2ε23 ε33” where εij are the com-
ponents of the recovered 3D strain tensor at this Gaussian point expressed in the beam coordinate
system.

The recovered 3D stress results are stored in input file name.S. The values are listed for each
Gaussian point identified by its location as: “x2 x3 σ11 σ12 σ13 σ22 σ23 σ33” where σij are the com-
ponents of the recovered 3D stress tensor at this Gaussian point expressed in the beam coordinate
system.

The recovered 3D strain and stress results at each Gaussian point expressed in the material co-
ordinate systems are similarly stored in input file name.EM and input file name.SM, respectively.
The recovered 3D strain and stress results at each node expressed in the beam coordinate systems
are similarly stored in input file name.EN and input file name.SN, respectively. The recovered 3D
strain and stress results at each node expressed in the material coordinate systems are similarly
stored in input file name.EMN and input file name.SMN, respectively.

The average of 3D strain and stress results at Gaussian points within each element are stored
in input file name.ELE, where the integer number indicating the element number, the following six
real numbers are strains in beam coordinate system, the next six real numbers are the stresses in
beam coordinate system, the next six real numbers are strains in material coordinate system, the
last six real numbers are the stresses in material coordinate system. This array can be used to
facilitate contour plot for visualization.

All these output files are in pure text format and can be opened by any text editor.
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12 VABS Installation

VABS is distributed in the form of VABSx.xReleasePcMM-DD-YEAR.zip for Windows operating
systems with “x.x” denotes the version number. Sometimes to circumvent some email systems, the
extension “zip” is changed to be ”pass”. You just need to change it back to be a zip file once you
received it. If you also want to run VABS in other platforms such as Unix/Linux or Mac, please let
the author know. Extracting the file VABSx.xReleasePcMM-DD-YEAR.zip to a folder you choose
is all you need to do for installation. There are at least three ways to run VABS:

• The safest way to execute VABS is to run VABSIII inputfile as a DOS command in Windows.
This can be achieved by Click Start, choose Run, and type in “cmd” and click OK. Then use
“cd” to enter the right folder where both the VABS executable and the input file is in.

• Drag your input file into the VABS executable. A window appears to run VABS along with
the input file. After it is done, the window will disappear and you have new files generated
in the folder of the input file. You can check your results in the output files as described
previously.

• Assign a unique extension, say vab, to your input file, and configure files with this extension
to be opened by VABS and to be edited by a text editor. From a folder’s window, click
Tools->Folder Options. Once the Folder Options dialog is open, click tab File Types. Click
the New icon to Create New Extension dialog, type vab and click OK. With the new file type
vab highlighted in the Registered file types list, click Advanced to open the Edit File Type
dialog. Click Change icon to choose the icon you like. Next, click on New, type open under
Action, then click Browse and point to the VABS executable and click OK. Click on New,
type edit under Action, then click Browse to find the executable for text editor you like to use
for editing input files and click OK. Click OK and Close to exit the Folder Options dialog.
Then you only need to double click the input file, it will launch VABS for you. You can also
rightclick an input file and open it with the text editor.

13 VABS Maintenance and Tech Support

Prof. Yu is committed to maintaining and providing tech support for VABS. A Google group is
specifically set up for information exchange related with VABS. Users are highly encouraged to
sign up through http://groups.google.com/group/hifi-comp to receive most recent news of VABS,
ask questions, and share with others. A technical question should be posted in the Google
group before it will be answered. A page of VABS FAQ will be constantly updated in the
group. Before you ask questions, please do the following:

1. Read the VABS manual carefully, if you have not done so;

2. Check the error message at the end of input file name.ech;

3. Make sure that you have provided the right input data through input file name.ech, which is
VABS’s understanding of your input file;

4. Check the VABS FAQ page on the Google group;
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5. Post your question in the discussion section of the group.

A web site (hifi-comp.com) has also been created to provide more exposure of the codes Prof.
Yu has developed including VABS, VAPAS, and VAMUCH through Internet. .

14 Epilogue

After a period of continuous development spanning more than 15 years, VABS has reached a
level of maturity, and its accuracy has been extensively verified by its developers and users. The
performance and robustness of code have been continuously improved based on feedback from its
users throughout the world. Although VABS has been designed in such a way that end users do not
have to fully understand its theoretical foundation (the details of which are spelled out in VABS
related publications), further questions are inevitable because VABS represents a new paradigm to
analyze composite beams which is drastically different from other methods. Nevertheless, it should
be clear that VABS is the best available code for engineers to design and analyze composite beam
cross sections.
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