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This paper presents a geometrically nonlinear analysis of composite beams including

static, dynamic, and eigenvalue analyses. With the increase in size and flexibility of

engineering components such as wind turbine blades, geometric nonlinearity plays an

increasingly significant role in structural analysis. The Geometric Exact Beam Theory

(GEBT), pioneered by Reissner and extended by Hodges, is adopted as the foundation

for this work. Special emphasis is placed on the vectorial parameterization of finite

rotation, which is a fundamental aspect in the geometrically nonlinear formulation. This

method is introduced based on Euler’s rotation theorem and the property of rotation

operation: the length preservation of the rotated vector. The GEBT is then implemented

with the Wiener-Milenković parameters using a mixed formulation. Several numerical

examples are studied based on the derived theory, and the results are compared with

analytical solutions and those available in the literature. The analysis of a realistic

composite wind turbine blade is provided to show the capability of the present model

for generalized composite slender structures. It concludes that the proposed model

can be used as a beam tool in a multibody framework whose valid range of rotation is

up to 2p. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985091]

I. INTRODUCTION

Many engineering components that have one of their dimensions larger than the other

two can be idealized as beams, e.g., bridges in civil engineering, joists, and lever arms in

heavy machine industries and helicopter rotor blades in aeronautics. This work1 is motivated

by the need for higher fidelity numerical models for the structural design of modern compos-

ite wind turbine blades. In weight-critical applications of beam structures, such as wings in

aerospace and blades in wind energy, composite materials are attractive due to their superior

weight-to-strength and weight-to-stiffness ratios. However, the use of composites complicates

engineering analysis because of the coupling effects in the structure. Moreover, geometric

nonlinearity is crucial to the analysis of highly flexible composite beam structures, especially

when applied to unprecedented-length turbine blades.2 The term “geometrically exact” sug-

gests that there is no approximation invoked in defining beam strains in terms of large dis-

placements and rotations in the theory.

The intrinsic formulation of the geometrically exact beam theory was first proposed by

Reissner3 in 1973. Here, the “intrinsic formulation” indicates that the one-dimensional (1D) beam

strains are developed in terms of virtual displacement and virtual rotation quantities so that the

formulation is not tied to a specific choice of displacement or rotation variables.4 Simo5 and

Simo and Vu-Quoc6 extended Reissner’s work to handle three-dimensional (3D) dynamic prob-

lems. Since then, researchers have been reporting many extensions and applications of geometric

exact beam theory (GEBT), where significant efforts have been invested in dealing with finite
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rotations. Jelenić and Crisfield7 implemented this theory based on the finite element method

where a new approach for interpolating the rotation field was introduced to preserve the geomet-

ric exactness. Betsch and Steinmann8 circumvented the interpolation of rotation by introducing a

reparameterization of the weak form corresponding to the equations of motion of GEBT. It is

noted that Ibrahimbegović9 implemented this theory by considering the initial twist and curva-

tures. More details on the vector-like parameterization of 3D finite rotations of this work were

presented in Ref. 10. Ibrahimbegović and Mikdad11 then extended the previous static implementa-

tion to include dynamics. A brief review on the geometrically exact beam theory and its imple-

mentation can be found in Ref. 12. In contrast to the displacement-based implementations, the

geometrically exact beam theory has also been formulated by mixed finite elements where both

the primary and dual fields are independently interpolated.13 In the mixed formulation, all the

necessary ingredients including Hamilton’s principle and the kinematic equations are combined in

a single variational formulation statement with Lagrange multipliers, and the motion variables,

generalized strains, forces and moments, linear and angular momenta, and displacement and rota-

tion variables are considered as independent quantities. Yu and Blair14 presented the implementa-

tion of GEBT in a mixed formulation where Rodrigues parameters are chosen to represent the

finite rotation. In that work, a new time-marching scheme was proposed, which is more efficient

than the one developed by Patil et al.15 Yu and Blair’s work resulted in an open source general-

purpose composite beam solver called “GEBT.” The readers are referred to a textbook by

Hodges,4 where comprehensive derivations and discussions on nonlinear composite beam theories

can be found. It is noted that these beam tools such as GEBT need a cross-sectional analysis as

pre-processing to provide the stiffness constants. For composite materials, all the elastic couplings

among extension, bending, shear, and torsion exist so that high-fidelity cross-sectional tools are

needed, including VABS16,17 and BECAS.18

The objectives of this paper are as follows: (1) to implement a geometric exact beam the-

ory with a Wiener-Milenković parameter based on the work by Yu and Blair14 and (2) to dem-

onstrate the application of this approach in the analysis of composite beams. It is shown that

GEBT has great potential for fluid-structure interaction studies along with other fluid theories.

For example, Li et al.19 presented an innovative and efficient approach by combining GEBT

and discrete vortex method (DVM) together in a tidal turbine analysis, which has the same

accuracy level as the three-dimensional finite element solution but much less computational

cost. The authors expect that this paper will clear the path for a wider and easier use of GEBT

in modern wind turbine structural design and analysis. The outline of this paper is as follows:

In Sec. II, we recapitulate Euler’s rotation theorem and the rotation tensor and introduce the

concept of vectorial parameterization of finite rotation. The equations of the geometrically exact

beam theory and the mixed formulation using Wiener-Milenković parameters are discussed in

Sec. III. In Sec. IV, we present a number of numerical examples including static, dynamic, and

eigenvalue analyses of isotropic and composite beams, which validate the present theory and

illustrate the capability of this beam solver. Conclusions are provided in Sec. V.

II. VECTORIAL PARAMETERIZATION OF ROTATION

This section reviews the theories of the rotation tensor and vectorial parameterization for

completeness of this paper. The content of this section can be found in many other papers and

textbooks.

A. Euler’s rotation theorem and rotation tensor

Euler’s rotation theorem states that an arbitrary motion of a rigid body that leaves one of

its points fixed can be represented by a single rotation of magnitude / about unit vector �n.20

Figure 1 shows the configuration of the problem where vector a rotates magnitude / about unit

vector �n, and the new vector after rotation is denoted as b. In our adopted notation, ð�Þ denotes

a unit vector, while a single underline and double underlines denote a vector and a tensor,

respectively. These two vectors are related as
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b ¼ CT a; (1)

where C is the rotation tensor and the superscript T denotes the transpose. The fundamental

property of a rotation operation is to preserve the length; the vector length does not change

when computed from its components resolved in different arbitrary orthonormal bases. For

example, kak ¼ kbk, where k � k denotes the Euclidean vector norm, which leads to

�nTa ¼ kak cos a ¼ kbk cos a; (2)

k~nak ¼ kak sin a ¼ kbk sin a: (3)

The tilde operator ð~�Þ defines a second-order, skew-symmetric tensor corresponding to the given

vector. In the literature, it is also termed as the “cross-product matrix.” For example,

~n ¼
0 �n3 n2

n3 0 �n1

�n2 n1 0

24 35:
The following equations can be drawn from the geometry depicted in Fig. 1:

b ¼ OC þ CB ¼ kbk cos a �n þ kbk sin a �s cos /þ �t sin /½ �: (4)

Unit vector �t is along the vector product of vectors �n and a

�t ¼ ~na

k~nak (5)

and unit vector �s is

�s ¼ ~t �n ¼
gð~naÞ�n
k~nak : (6)

FIG. 1. A finite rotation of magnitude / about n.

033306-3 Q. Wang and W. Yu J. Renewable Sustainable Energy 9, 033306 (2017)



With the help of Eqs. (2), (3), (5), and (6), Eq. (4) can be written as

b ¼ aþ sin /ð~naÞ þ ð1� cos /Þ~n~na ¼ CT a; (7)

where the rotation tensor C is

C ¼ D � sin / ~n þ ð1� cos /Þ~n~n (8)

with D a 3� 3 identity matrix. This equation is known as the Rodrigues rotation formula.

B. Wiener-Milenković parameters

A finite rotation in 3D space discussed in the previous section (Sec. II A) leads to a one-

to-one vector transformation,21 although four parameters (rotation magnitude / and rotation

axis �n ¼ fn1; n2; n3gT
) are used instead of three. To eliminate the redundancy in the four-

parameter description and to exploit the tensorial nature of rotation, we introduce the follow-

ing definition

c ¼ pð/Þ �n; (9)

where c is the rotation parameter vector and pð/Þ is the generating function. For the Wiener-

Milenković parameters used in the present paper,

p /ð Þ ¼ 4 tan
/
4
: (10)

A singularity can be observed in this representation since kck ! 1 when j/j ! 2p.

Substituting Eq. (9) into (8), the explicit expression of the rotation tensor in terms of the

vectorial parameterization can be obtained as

C ¼ D � sin /
p /ð Þ ~c þ 1� cos /

p2 /ð Þ ~c~c: (11)

For the Wiener-Milenković parameters, the rotation tensor is found by substituting Eq. (10) into

Eq. (11) as

C cð Þ ¼
1

4� c0ð Þ2
c2

0 � cTc
� �

D � 2c0~c þ 2ccT
h i

; (12)

where c0 is a scalar parameter defined as

c0 ¼ 2 1� tan2 /
4

� �
¼ 2� cTc

8
: (13)

In the expanded form,

C cð Þ ¼
1

4� c0ð Þ2

c2
0 þ c2

1 � c2
2 � c2

3 2 c1c2 þ c0c3ð Þ 2 c1c3 � c0c2ð Þ
2 c1c2 � c0c3ð Þ c2

0 � c2
1 þ c2

2 � c2
3 2 c2c3 þ c0c1ð Þ

2 c1c3 þ c0c2ð Þ 2 c2c3 � c0c1ð Þ c2
0 � c2

1 � c2
2 þ c2

3

2664
3775; (14)

where c1, c2, and c3 are the components of vector c. For a linear theory, ci values are assumed

to be small, and their powers and products are negligible. The rotation matrix then reduces to

CðcÞ ¼ D � ~c: (15)
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Interested readers are referred to a recent textbook20 containing many aspects of multibody

analysis for more details on the vectorial parameterization of finite rotations.

III. MIXED FORMULATION OF THE GEOMETRICALLY EXACT BEAM THEORY

In this section, we derive the equations used in a mixed formulation of GEBT where finite

rotation is represented by the Wiener-Milenković parameters. Figure 2 shows a beam in its

undeformed and deformed states. A reference frame bi is introduced along the beam axis for

the undeformed state; a frame Bi is introduced along each point of the deformed beam axis.

The variational statement of the geometric exact beam theory is4

ðt2

t1

ðl

0

dVTPþ dXTH � dcTF�djTM þ dq
T
f þ dw

T
m

h i
dx1dt

¼
ðl

0

ðdq
T
P̂ þ dw

T
ĤÞjt2t1 dx1 �

ðt2

t1

ðdq
T
F̂ þ dw

T
M̂Þjl0dt; (16)

where dq and dw are the virtual displacement and rotation, respectively; F and M are the

sectional force resultant and moment resultant, respectively; P and H are the sectional linear

momentum and angular momentum, respectively; V and X are the linear and angular veloci-

ties of the beam reference line, respectively; c and j are the force-strain measures and

moment-strain measures, respectively; f and m are the distributed forces and moments per

unit length, respectively; F̂ and M̂ are the forces and moments, respectively, evaluated at the

ends of the space interval; and P̂ and Ĥ are the linear momentum and angular momentum,

respectively, evaluated at the ends of the time interval. It is noted that unlike in the previous

section (Sec. II), the overbarred virtual quantities, dð�Þ, denote that the virtual quantity is not

necessarily the variation of a real function in this section. Using the 1D virtual kinematic

relations4 and integrating this equation by parts with respect to t and x1, we obtain the

following:

FIG. 2. Schematic showing undeformed and deformed beam configurations.22
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ðt2

t1

ðl

0

n
dq

TðF0 þ ~KF� _P � ~XPþ f Þ

þ dw
T

M0 þ ~KM þ ð~e1 þ ~cÞF� ~VP� _H � ~XH þ m
� �o

dx1dt

¼
ðl

0

dq
T �P þ dw

T �H

h i���t2
t1

dx1 �
ðt2

t1

dq
T �F þ dw

T �M

h i���l
0
dt; (17)

where K¼ jþ k is the summation of moment-strain measures and initial curvatures; e1 is

defined as a column matrix as e1 ¼ b1 0 0cT . The check operator on the right-hand-side of the

equation is defined as ð��Þ ¼ ð̂�Þ � ð�Þ. The “primed” and “dotted” terms represent their spatial

and temporal partial derivatives, respectively. Note that all the quantities in Eqs. (16) and (17)

are expressed in the deformed base B. The constitutive equations relate the velocities to the

momenta and the 1D strain measures to the sectional resultants as

P
H

	 

¼ I

V
X

	 

; (18)

F
M

	 

¼ S

c
j

	 

; (19)

where I and S are the sectional mass and stiffness matrices, respectively. For composite beam

structures, the sectional stiffness matrix S could be fully populated, which means that all of the

fundamental deformation modes, including extension, shear, torsion, and bending, could be

coupled.

To derive the mixed formulation, we need to incorporate the kinematical relations into the

original variational statement of Hamilton’s principle to obtain a new functional so that all the

variables can vary independently in the calculus of variations. The 1D kinematical equations

are written as

u0 ¼ CbBðe1 þ cÞ � e1 � ~ku; (20)

_u ¼ CbBV � v� ~xu; (21)

c0 ¼ Q�1ðjþ k � CBbkÞ; (22)

_c ¼ Q�1ðX� CBbÞx; (23)

where u is the 1D displacement; CBb is the rotation matrix and CBb¼ (CbB)T; v and x are the

linear and angular velocities of undeformed triad b in the inertial frame; c are the Wiener-

Milenković parameters introduced in the previous section (Sec. II); and Q is a matrix defined as

Q ¼ 1

4� c0ð Þ2
4� 1

4
cTc

� �
D� 2~c þ 1

2
ccT

� �
(24)

and

Q�1 ¼ 1� 1

16
cTc

� �
Dþ 1

2
~c þ 1

8
ccT : (25)

Interested readers are referred to Ref. 4 for the detailed derivation of Eqs. (20)–(23). These

kinematical equations are adjoined to Eq. (16) by Lagrange multipliers so that the left-hand-

side becomes
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ðt2

t1

ðl

0

n
dVTPþ dXTH � dcTF� djTM þ dq

T
f þ dw

T
m

þ d k1ðu0 � CbBðe1 þ cÞ þ e1 þ ~kuÞ
� �

þ d k2ð _u � CbBV þ vþ ~xuÞ
� �

þ d k3ðc0 � Q�1ðjþ k � CBbkÞuÞ
� �

þ d k4ð _c � Q�1ðX� CBbÞÞ
� �o

dx1dt: (26)

The Lagrange multipliers, ki, can be identified by using the condition that virtual quantities can

be independently and arbitrarily varied. For example, for the virtual strain dc to be arbitrary,

the following equation needs to be satisfied:

�F� CBbkT
1 ¼ 0: (27)

Hence, the value of k1 can be expressed as kT
1 ¼ �CbBF.

To deal with moving beams, we introduce a global body-attached coordinate system a, and

it is clear that the relation Cab between frame a and undeformed frame b is determined and

time independent. If we introduce another set of Wiener-Milenković parameters ca which is

defined in frame a, then the following equation can be derived:

CBa ¼ CbaC; (28)

with C a function of ca identical to CBb in Eq. (14) where c is replaced by ca. After identifying

the Lagrange multipliers in Eq. (26), the variational statement in Eq. (17) can be rewritten asðl

0

n
du0Ta Fa þ dw

0T
a Ma þ duT

a ð _Pa þ ~xaPaÞ

þ dw
T

a
_Ha þ ~xaHa þ ~VaPa � CaBð~e1 þ ~cÞFB

� �
� dF

T

a CaBðe1 þ cÞ � Cabe1

� �
� dF

0T
a ua � dM

0T
a ca

� dM
T

a Q�1
a Cabjþ dP

T

a ðVa � va � ~xaua � _uaÞ

þ dH
T

a ðXB � xB � CbaQa _caÞ � duT
a fa � dw

T

a ma

o
dx1

¼ ðduT
a F̂a þ dw

T

a M̂a � dF
T

a ûa � dM
T

a ĉaÞjl0: (29)

It is pointed out that the time derivatives of virtual quantities are removed by carrying out inte-

gration by parts, and Qa is defined similar to Eq. (28) as

Qa ¼ CabQCba: (30)

The subscripts in Eq. (29) indicate in which frame the quantities are defined, and they can be

easily transformed between different frames using the rotation matrix.

Equation (29) contains all the information needed for the mixed formulation of the geometric

exact beam theory. We consider ua, ca, FB, MB, PB, and HB as the fundamental unknown varia-

bles. Linear shape functions are used for test functions dua; dwa; dFa, and dMa since only the

first order spatial derivatives appear in these terms and constant shape functions are used for dPa

and dHa.

Dividing a beam into N elements with the starting node of the i element numbered as i and

the ending number as iþ 1, and using the linear and constant shape functions for different vari-

ables, the integration in Eq. (29) can be calculated analytically. Finally, we conclude the fol-

lowing finite element equations:
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f�u1
� F�1 ¼ 0; (31)

f�w1
�M�1 ¼ 0; (32)

f�F1
� û1 ¼ 0; (33)

f�M1
� ĉ1 ¼ 0 (34)

at the starting node and

fþuN
� F�Nþ1 ¼ 0; (35)

fþwN
�M�Nþ1 ¼ 0; (36)

fþFN
þ ûNþ1 ¼ 0; (37)

fþMN
þ ĉNþ1 ¼ 0 (38)

at the ending node. Note that F�1; M�1; F�Nþ1, and M�Nþ1 are the external forces/moments balanc-

ing the internal resultants. At each intermediate point, the equations are

fþui
þ f�uiþ1

¼ 0; (39)

fþwi
þ f�wiþ1

¼ 0; (40)

fþFi
þ f�Fiþ1

¼ 0; (41)

fþMi
þ f�Miþ1

¼ 0; (42)

where i¼ 1, 2…, N � 1. Also, for each element, we have

fPi
¼ 0; (43)

fHi
¼ 0; (44)

where i¼ 1,…, N. The f matrices in the above equations are calculated analytically from the

integration in Eq. (29) and written as

f 7
ui
¼ 7CTCabFi � �f

7

i þ
DLi

2
~xaCTCabPi þ _

CTCabPi

h i
; (45)

f 7
wi
¼ 7CTCabMi � �m7

i þ
DLi

2
~xaCTCabHi

�
þ _

CTCabHi þ CTCabð ~ViPi � ð~e1 þ ~ciÞFiÞ�; (46)

f 7
Fi
¼ 6ui �

DLi

2
CTCab e1 þ cið Þ � Cabe1

h i
; (47)

f 7
Mi
¼ 6ci �

DLi

2
Q�1

a Cabji; (48)

fPi
¼ CTCabVi � vi � ~xaui � _ui; (49)

fHi
¼ Xi � CbaCxa � CbaQa _ci; (50)

with

�f
�
i ¼

ð1

0

ð1� gÞfaDLidg; (51)
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�f
þ
i ¼

ð1

0

gfaDLidg; (52)

�m�i ¼
ð1

0

ð1� gÞmaDLidg; (53)

�mþi ¼
ð1

0

gmaDLidg; (54)

where DLi is the length of the ith element; Li is the x1 coordinate of the starting node; and g is

a general coordinate defined as

g ¼ x1 � Li

DLi
: (55)

In the governing equations from Eqs. (31) to (44), those corresponding to fu and fw are the

equations of motion; the equations corresponding to fF and fM are the strain-displacement equa-

tions; and the equations corresponding to fP and fH are the velocity-displacement kinematical

equations. These equations can also be written in the symbolic form as

FðX; _XÞ ¼ 0; (56)

where F is a system of 18Nþ 6M equations and X is a vector containing 18Nþ 6M unknowns.

Here, N is the number of elements and M is the total number of boundary points and connec-

tion points in beam or beam assemblies.

The system of nonlinear equations is solved using the Newton-Raphson method along with

line search to guarantee global convergence. A Newmark type time marching scheme is derived

for transient analysis. For the eigenvalue analysis, GEBT calculates the steady state solution

first, and the eigenvalue analysis is performed corresponding to this state. The readers are

referred to Yu and Blair14 for more details on eigenvalue solvers and time marching schemes

in solving these equations.

IV. NUMERICAL EXAMPLES

A. Example 1: Static bending of a cantilever beam

The first example is a benchmark problem for the geometrically nonlinear analysis of

beams.5,23 We calculate the static deflection of a cantilever beam that is subjected at its free

end to a constant moment M. The length of the beam L is 12 in., and the side length of the

square section is 1 in. The beam is discretized into 16 elements in the GEBT calculation. The

Young’s modulus E of the material is given as 30� 106 lb/in4. The moment applied to the

beam is M ¼ k �M, where �M ¼ p EI
L . The parameter k will vary between 0 and 2. Here, the tip

displacements are compared with the analytical solutions, which can be found in the study by

Mayo et al.24 Table I lists the analytical solution and the results obtained by the current GEBT

calculation. A very tight convergence tolerance of 1.0 � 10�12 for the residual value in the

Newton-Raphson algorithm has been applied to all the numerical examples. Good agreement

between these two sets of results is observed. It is noted that as the applied moment is

increased, the number of iterations needed to obtain converged results in GEBT increases, and

a singularity exists when the rotation angle reaches 2p. The GEBT result is approximated by

given k as 1.96 (see the last line in Table I). The deformation of the beam under different

applied bending momenta is presented in Fig. 3. The results obtained by the original version of

GEBT using Rodrigues parameters, denoted as GEBT (Rodrigues), are also listed in Table I. It

can be observed that by using Rodrigues rotation parameters, the singularity is observed when

the rotation reaches p.
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B. Example 2: Static bending of a curved beam in 3D space

The second example is to validate the capability of GEBT for initially curved beams. We

calculate the static deflection of a 45�-bend cantilever beam subjected to a concentrated end

load, which was proposed by Bathe and Bolourchi25 and is widely used as a benchmark for

curved-beam analysis. The beam lies in the x–y plane, while the tip load is applied along the z
direction with the magnitude P¼ 600 lb. The radius of curvature is 100 in., and the material

properties are given as E¼ 107 psi and �¼ 0.0. The side length of the square cross-section of

the beam is 1.0 in. A sketch of the problem is presented in Fig. 4. In the GEBT calculation, the

TABLE I. Tip displacements of the cantilever beam subject to a constant moment (in inches).

k Analytical solution GEBT Iteration number GEBT (Rodrigues) Iteration number (Rodrigues)

0.4 [�2.9181, 6.5984] [�2.9161, 6.6004] 9 [�2.9175, 6.6016] 9

0.8 [�9.1935, 8.6374] [�9.1946, 8.6455] 14 [�9.2220, 8.6333] 15

1.0 [�12.0000, 7.6394] [�12.0062, 7.6466] 14 [�12.0848, 7.6239] 1329

1.2 [�13.8710, 5.7583] [�13.8800, 5.7576] 19 … …

1.6 [�14.2705, 1.6496] [�14.2403, 1.6287] 25 … …

2.0 [�12.0, 0.0] [�11.9017, �0.0709] 968 … …

FIG. 3. Calculated deformation of a cantilever beam of example 1 under several constant bending moments.

FIG. 4. Schematic of the undeformed curved beam used in example 2.
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beam is discretized as 16 elements. The tip displacements are provided in Table II for compari-

son, and good agreement is demonstrated.

C. Example 3: Dynamic analysis of a beam assembly

The capability of analyzing beam assemblies and dynamic behavior of GEBT is tested in

this example. A joined-beam model with two cantilever beam members meeting at their tips

is used for the analysis.26 The sketch of this beam assembly is presented in Fig. 5, and the

cross-section of the cantilever is rectangular with a width of 0.1 m and a thickness of 0.05 m.

The material properties of the beam are given as follows: E¼ 70 GPa, �¼ 0.35, and

q¼ 2700 kg/m3. A sinusoidal vertical force is applied at the joint of the beam assembly,

which is given by

FzðtÞ ¼
0 t < 0

AF sin ðxFtÞ t � 0;

(
(57)

with AF¼ 1.0� 105 N and xF¼ 20 rad/s. Each beam member is discretized into 10 elements.

The results obtained by GEBT are compared with those from an ANSYS calculation. BEAM

188 elements are used, and the mesh is the same as that used in GEBT. The time step is

0.001 s in GEBT and ANSYS. The non-zero displacement components of the joint are plotted

in Fig. 6, and a good agreement is shown. Since the rotations are described by the rotation

parameters in the present work, it is easy to deal with another important case in structural anal-

ysis, the structure with a follower force. Let Fb
1 denote the load vector applied to the structure

before deformation and resolved in the bi frame. It can be written in the body-attached ai frame

as Fb
1 ¼ CbaFa. In the deformed configuration, the load vector is written as FB

2 with superscript

in the frame in which the quantity is resolved. Given that it is a follower force, the components

of vector FB
2 are equal to Fb

1, i.e., FB
2 ¼ Fb

1. Therefore, the load vector in the deformation

TABLE II. Tip displacements of a curved beam subject to a concentrated load (in inches).

Bathe-Bolourchi25 GEBT

U1 �13.4 �13.4

U2 �23.5 �23.5

U3 53.4 53.4

FIG. 5. Schematic of the undeformed joint beam assembly used in example 3.
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resolved in the body-attached frame is derived as Fa ¼ CaBFB
2 ¼ CaBCbaFa ¼ CTFa, where C is

the rotation tensor in the ai frame defined in Eq. (28). Figure 7 shows the behavior of this

beam assembly under a dead force and a follower force. One can observe that the structure

with a follower force is softer than with a dead force for nonlinear analysis.

Finally, an eigenvalue analysis was conducted using GEBT and ANSYS for validation. The

lowest five natural frequencies are listed in Table III. The percent differences between the

results are calculated as
kGEBT�ANSYSk

ANSYS � 100. Again, good agreement between the results

obtained by GEBT and ANSYS is demonstrated, where the largest error is only 1.57%.

D. Example 4: Dynamic analysis of a wind turbine blade

The last example is a transient analysis of a composite beam with the cross-section that is

representative of a wind turbine blade, although it is constant along the length here. An MH

104 airfoil, which was studied by Chen et al.,27 is used in this case. The blade is 60 m long and

cantilevered at one end. The sectional properties can be found in the study by Chen et al.27 and

are given as

I ¼

258:053 0:00 0:00 0:00 7:07839 �71:6871

258:053 0:00 �7:07839 0:00 0:00

258:053 71:6871 0:00 0:00

48:59 0:00 0:00

Symmetry 2:172 0:00

46:418

26666666664

37777777775
; (58)

FIG. 6. ANSYS and GEBT calculated tip displacement histories of the joined beam under a vertical tip load.
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TABLE III. Comparison of natural frequencies of the beam assembly in example 3 (in Hz).

1 2 3 4 5

GEBT 35.23 171.02 215.87 275.05 407.2

ANSYS 35.17 169.83 212.53 273.34 403.53

Percent difference 0.17 0.70 1.57 0.63 0.91

FIG. 7. ANSYS and GEBT calculated tip displacement histories of the joined beam under dead and follower vertical tip

loads.

FIG. 8. The sinusoidal vertical force in example 4.
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S¼

2:389� 109 1:524� 106 6:734� 106 �3:382� 107 �2:627� 107 �4:736� 108

4:334� 108 �3:741� 106 �2:935� 105 1:527� 107 3:835� 105

2:743� 107 �4:592� 104 �6:869� 104 �4:742� 106

2:167� 107 �6:279� 104 1:430� 106

Symmetry 1:970� 107 1:209� 107

4:406� 108

26666666664

37777777775
:

(59)

Note that the sectional stiffness matrix is fully populated in this case, which means that

full elastic coupling among extension, shear, twist, and bending is taken into consideration. The

FIG. 9. Schematic of the composite wind turbine blade under vertical force in example 4.

FIG. 10. Tip displacement and rotation histories of a realistic wind turbine blade under a vertical tip load.
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beam is divided into 10 elements in the GEBT calculation, and a sinusoidal point force gov-

erned by Eq. (57) is applied at the free tip in the z direction with AF¼ 1.0� 105 N and

xF¼ 20 rad/s (see Fig. 8). A sketch of this example is shown in Fig. 9. The time step used in

this example is 0.001 s so that a set of converged results can be achieved. The tip displacement

and rotation histories of the beam are plotted in Fig. 10. Note that all the components including

three displacements and three rotations are non-zero due to the coupling effects. The time histo-

ries of the stress resultants at the root of the beam are given in Fig. 11.

V. CONCLUSION

This paper presents an implementation and validation of the geometrically exact beam the-

ory. Based on previous work,14 Wiener-Milenković parameters are chosen to describe beam

rotations. While the valid range of rotation is extended, there is, however, due to the analytical

nature of the mixed formulation, a singularity when the rotation reaches 2p. Given the fact that

the kinematics of the present work are implemented in a body-attached coordinate system ai,

this valid rotation range should be enough for most of the practical design scenarios of wind

turbine blades and slender structural parts of other renewable energy systems. Numerical exam-

ples are presented that demonstrate the capability of the present beam solver. Two benchmark

static problems for geometric nonlinear and curved beams are studied. The agreement between

the results calculated by the proposed model and the analytical solution and those available in

the literature is excellent. A dynamic analysis of a beam assembly is conducted using GEBT

and ANSYS, and GEBT shows a good agreement with ANSYS for displacements and natural

FIG. 11. Stress-resultant time histories at the root of a wind turbine blade.
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frequencies. Finally, a composite beam with a realistic wind turbine cross-section is analyzed

where all coupling effects were accounted for, including those among extension, shear, bending,

and torsion. To sum up, GEBT is a powerful tool for composite beam analysis. Its features

including large rotation and elastic coupling effects make it especially suitable for the structural

design of modern MW-scale composite wind turbine blades.
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parameters,” in Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Boston, Massachusetts (2013).

2D. T. Griffith and T. D. Ashwill, “The Sandia 100-meter all-glass baseline wind turbine blade: Snl100-00,” Technical
Report No. SAND2011-3779, Sandia National Laboratories, 2011.

3E. Reissner, “On one-dimensional large-displacement finite-strain beam theory,” Stud. Appl. Math. 52, 87–95 (1973).
4D. H. Hodges, Nonlinear Composite Beam Theory (AIAA, 2006).
5J. C. Simo, “A finite strain beam formulation. the three-dimensional dynamic problem. Part I,” Comput. Methods Appl.
Mech. Eng. 49, 55–70 (1985).

6J. C. Simo and L. Vu-Quoc, “A three-dimensional finite-strain rod model. Part II,” Comput. Methods Appl. Mech. Eng.
58, 79–116 (1986).
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10A. Ibrahimbegović, F. Frey, and I. Ko�zar, “Computational aspects of vector-like parameterization of three-dimensional
finite rotations,” Int. J. Numer. Methods Eng. 38, 3653–3673 (1995).
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