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Abstract

An equivalent classical plate model of corrugated structures is derived using the
variational asymptotic method. Starting from a thin shell theory, we carry out an
asymptotic analysis of the strain energy in terms of the smallness of a single corru-
gation with respect to the characteristic length of macroscopic deformation of the
corrugated structure. Without invoking any apriori assumptions, we obtained the
complete set of analytical formulas for effective plate stiffnesses valid for both shal-
low and deep corrugations. These formulas can reproduce the well-known classical
plate stiffnesses when the corrugated structure is degenerated to a flat plate. The
extension-bending coupling stiffnesses are obtained the first time. The complete set
of recovery relations are also derived for recovering the fields within the corrugated
structure from the strains obtained in the equivalent plate analysis.

Key words: Corrugated structure; Corrugated plate; Homogenization; Equivalent
plate; Variational asymptotic method

1 Introduction

Corrugated structures are one of the most important applied branches of thin
shells, which have been widely used in civil, automotive, naval and aerospace
engineering, to name only some, diaphragms for sensing elements, fiberboards,
folded roofs, container walls, sandwich plate cores, bridge decks, ship panels,
etc. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Recently, corrugated structures are also
applied for flexible wings or morphing wings [13, 14, 15] due to their unique
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Fig. 1. Equivalent plate modeling of corrugated structures.

characteristics of having orders of magnitude different stiffnesses in different
directions.

Although commercial codes such as ANSYS allow one to analyze corrugated
structures by meshing all the corrugations with shell elements or solid ele-
ments, it is not an efficient or even a practical way to finish prototype in a
timely manner as it requires significant computing time, particularly if the
structure is formed by hundreds or thousands of corrugations. The common
practice in design and analysis of corrugated structures is to model it as an
equivalent flat plate, which is possible if the period of corrugation is much
smaller than the characteristic length of macroscopic deformation of the struc-
ture (see Fig.1). For example, to model the corrugated structure using the
Kirchhoff plate model, also called the classical plate model, we need to obtain
the following constitutive relations by analyzing a single corrugation:
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(1)

where x, y are the two in-plane coordinates describing the equivalent plate,
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Nxx, Nyy, Nxy the force resultants, Mxx,Myy,Mxy the moment resultants, ϵxx,
ϵyy, ϵxy the membrane strains, κxx, κyy, κxy the curvature strains, A, D and
B represent extension stiffnesses, bending stiffnesses, and extension-bending
couplings, respectively. The stiffness matrix in Eq. (1) could be in general pop-
ulated for an equivalent plate model of general corrugated structures. However,
it will be shown later that some of the stiffness constants vanish as shown in
Eq. (1) for a corrugated structure made of a single isotropic material.

The literature is rich in equivalent plate modeling of corrugated structures
with the first treatment known to the authors dated 1923 [16] and a very
recent treatment appeared in 2013 [17]. Various methods with different levels
of sophistication were used in numerous studies. Generally speaking, existing
methods can be generally classified either as engineering approaches based on
various assumptions or asymptotic approaches based on asymptotic analysis of
governing differential equations of a shell theory. Most methods fall in the cat-
egory of engineering approaches which invoke various assumptions for bound-
ary conditions and force/moment distribution within the corrugated structure.
For a given state of constant strain, the actual (or assumed) distributions of
forces and moments within the corrugated structure will be determined. Then
force equivalence or energy equivalence is used to derive the corresponding
stiffness constants (see [18], [19], [17] and references cited therein). Although
both analytical approach and finite element analysis can be used to predict
these stiffness constants, the analytical approach has the advantage of pro-
viding a set of close-form expressions in terms of the material and geometry
characteristics of the corrugated structure while the finite element analysis
predicts values which are valid for a specific corrugated structure. Asymp-
totic approaches exploit the smallness of a single corrugation with respect
to characteristic length of macroscopic deformation of the corrugated struc-
ture [20, 21, 22, 23]. Substituting asymptotic expansion of the field variables
into the governing differential equation of the shell theory, a series of system
of governing differential equations corresponding to different orders can be
solved to find the relationship between the equivalent plate and the corru-
gated structure. Because different methods are used to treat this problem, it
is not surprising that different results are obtained in previous studies, which
will summarized and compared here.

2 Results

To facilitate the comparison of different results in the literature, we need
to set up the necessary notations. Let x be the Cartesian coordinate in the
corrugation direction and ε the projected length of the corrugation (Fig. 2).
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Fig. 2. Shell geometry and unit cell.

We denote by

X =
x

ε
, (2)

the dimensionless “cell coordinate”; Within a cell, X changes between −1/2
and 1/2. For any parameter, f , changing within a cell, ⟨f⟩ means the average
of the cell,

⟨f⟩ ≡
∫ 1

2

− 1
2

f(X)dX. (3)

The shape of the corrugation is described by the x3(X) which is a periodic
function with the period unity. Without loss of generality, one can set

⟨x3⟩ = 0, (4)

by shifting the observer’s frame in the vertical direction. Let us also denote

x3 = εϕ(X), (5)

so that

φ =
dx3(x)

dx
=
dϕ(X)

dX
(6)

Let a = 1 + φ2, we can compute the arc-length of the corrugation S and the
moment of inertia along the corrugation direction Iy as

S = ε
⟨√

a
⟩
, Iy = hε2

⟨
ϕ2
√
a
⟩
. (7)
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Fig. 3. Unit cell of a corrugated structure (sinusoidal shape is used for illustration).

2.1 Main results from previous studies

To our best knowledge, all existing studies conveniently assume there are
no extension-bending couplings, which implies that bending problem can be
solved by the following fourth-order partial differential equation:

D11
∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= p, (8)

where x, y are the Cartesian coordinates on the effective plate (Fig.1), w the
transverse displacement, p the effective pressure load, H = D12+2D66. Seydel
[24] followed Huber [16] and obtained the following formulas for the equivalent
bending stiffnesses

D11 =
ε

S

Eh3

12(1− ν2)
, D12 = 0,

D22 = EIy, D66 =
S

ε

Eh3

24(1 + ν)
.

(9)

Here S denotes the arc-length of the corrugation, ε the projected length of
the corrugation, Iy the moment of inertia along the corrugation direction, h
the thickness (Fig. 3). It is assumed that the corrugated plate is made of
isotropic elastic material with the Young’s modulus E, and the Poisson’s ratio
ν. These results are also widely cited in textbooks [25, 26, 27]. In later works,
approximations for S and Iy for different corrugated shapes were obtained
[28, 25, 29, 30]. A review of different approximate formulas of S and Iy for
various corrugation shapes can be found in Luo et al. [31]. This is not needed
as it is easy to evaluate the two integrals in Eq. (7) accurately for any given
corrugated shape using computers nowadays.
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Later Briassoulis [18] proposed the following modified relations

D11 =
ε

S

Eh3

12(1− ν2)
, D12 = νD11,

D22 =
EhT 2

2
+

Eh3

12(1− ν2)
, D66 =

Eh3

24(1 + ν)
.

(10)

Here T is the rise of the corrugations measured to middle surface as shown
in Fig. 3. Briassoulis correctly recognized D12 due to the Poisson’s effect.
However, as will be shown later, the formulas for D22 and D66 are not correct.
The expression for D22 is obtained by assuming a sinusoidal corrugated profile,
x3 = T sin(2πx/ε). Briassoulis’s relations are also used in [32, 33, 34] with D22

modified in [32] for a trapezoidal corrugated profile.

Very recently, Xia et al. [19] obtained the following formulas for bending stiff-
nesses

D11 =
ε

S

Eh3

12(1− ν2)
, D12 = νD11,

D22 =
EIy

1− ν2
+

⟨
1√
a

⟩
Eh3

12(1− ν2)
, D66 =

S

ε

Eh3

24(1 + ν)
.

(11)

There are other bending stiffnesses proposed in the literature such as those
cited by [35] from [36, 37] which are not listed here because they are not as
complete and accurate as those listed here.

The equivalent extension stiffnesses were originally found for applications such
as roofs and shear walls in 1960-70s [38, 39, 40, 41, 42, 37]. The commonly
accepted formulas in literature are:

A11 =
Eh3

6(1− ν2)T 2
, A12 = νA11, A22 =

S

ε
Eh, A66 =

ε

S

Eh

2(1 + ν)
. (12)

Later, in [18], Briassoulis provided different formulas for A11 and A66

A11 =
Eh3

h2 + 6(1− ν2)T 2
(
S2

ε2
− S

2πε
sin 2πS

ε

) , A66 =
Eh

2(1 + ν)
. (13)

with A12 = νA11 and A22 the same as that in Eq. (12). Again, the expres-
sion for A11 is obtained by assuming a sinusoidal corrugated profile, x3 =
T sin(2πx/ε).

Very recently, Xia et al. [19] obtained the following formulas for extension
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stiffnesses

A11 =
Eh3

12(1− ν2)

1⟨
1√
a

⟩
h2

12
+ Iy

h

, A12 = νA11,

A22 = ν2A11 +
S

ε
Eh

(
1

1− ν2
− 1− ν2

4(1 + ν)2

)
, A66 =

ε

S

Eh

2(1 + ν)
.

(14)

Andrianov et al. [20, 21, 22, 23] obtained different equations by asymptotic
analysis of elasticity equations, but the origin of deviations remains unclear.

2.2 Present results

We obtained the following general relations for the equivalent plate stiffnesses
for corrugated structures:

A11 =
E

1− ν2
12ε2 ⟨φA⟩

hC2
+

Eh

1− ν2

⟨
1√
a

⟩
1

C2
, A12 = νA11,

A22 = Eh
⟨√

a
⟩
+ ν2A11, A66 = µhα1,

B11 =
E

1− ν2
12ε3 ⟨φA⟩

hC2
B +

Eh

1− ν2

⟨
1√
a

⟩
1

C2
Bε, B12 = νB11,

B22 = Ehε
⟨√

aϕ
⟩
+ ν2B11, B66 = µhα2,

D11 =
Eh3

12(1− ν2)

(
122ε4B2

h4C2
⟨φA⟩+ 1

⟨
√
a⟩

)
+

Eh

1− ν2
ε2B2

C2

⟨
1√
a

⟩
,

D22 = Ehε2
⟨
ϕ2
√
a
⟩
+
Eh3

12

⟨
1√
a

⟩
+ ν2D11, D12 = νD11,

D66 =
µh

4

⟨√
a

3
h2 − 1√

a

h4φ′2

122ε2a2
− aα2

2

1 + φ′2h2

48ε2a3

⟩
.

(15)

where

B =
⟨
√
aϕ⟩

⟨
√
a⟩

, C = −12 ⟨φA⟩ ε
2

h2
−
⟨

1√
a

⟩
,

α1 = 1/

⟨ √
a

1 + φ′2h2

48ε2a3

⟩
, α2 = α1

⟨ h2φ′

12εa

1 + φ′2h2

48ε2a3

⟩
,

(16)

and

A(X) = −
∫ X

0

√
aϕ(Y )dY + B

∫ X

0

√
adY (17)

We also obtained the following relations for us to recover the shell strains in
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the original corrugated structure:

γ011 =c1
√
a− νa(ϵyy + x3κyy),

2γ012 =

√
ac2 − h2φ′κxy

12εa

1 + φ′2h2

48ε2a3

,

γ022 =ϵyy + x3κyy,

ρ011 =a
(
c1
12x3
h2

+ c4

)
+ ν

√
aκyy,

2ρ012 =−
2
√
aκxy +

φ′

2εa
c2

1 + φ′2h2

48ε2a3

,

ρ022 =− 1√
a
κyy.

(18)

with

c1 =
εB(v3,11 + νv3,22)− (v1,1 + νv2,2)

C
, (19)

c2 = α1(v1,2 + v2,1)− α2v3,12, (20)

c4 =
1

⟨
√
a⟩

(v3,11 + νv3,22)−
12

h2
c1
⟨x3

√
a⟩

⟨
√
a⟩

. (21)

In general, the coupling stiffnesses, Bij, are not zero. They vanish, however,
for symmetric corrugations of which ϕ(X) is an odd function of X.

−ϕ(X) = ϕ(−X), (22)

and due to periodicity of ϕ(X),

ϕ(1/2) = 0. (23)

Derivative φ = dϕ/dX is an even function, and so is a = 1 + φ2. Therefore,
ϕ
√
a is an odd function and ⟨

ϕ
√
a
⟩
= 0. (24)

Thus B = 0. Derivative φ′ is an odd function thus

α2 = 0. (25)

The equivalent plate stiffnesses can be simplified for a symmetric corrugation
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as

A11 =
E

1− ν2
12ε2 ⟨φA⟩

hC2
+

Eh

1− ν2

⟨
1√
a

⟩
1

C2
, A12 = νA11,

A22 = Eh
⟨√

a
⟩
+ ν2A11, A66 = µhα1,

B11 = B12 = B22 = B66 = 0,

D11 =
Eh3

12(1− ν2)

1

⟨
√
a⟩
,

D22 = Ehε2
⟨
ϕ2
√
a
⟩
+
Eh3

12

⟨
1√
a

⟩
+ ν2D11, D12 = νD11,

D66 =
µh

4

⟨√
a

3
h2 − 1√

a

h4φ′2

122ε2a2

1 + φ′2h2

48ε2a3

⟩
.

(26)

The formulas for c1, c2, c4 needed for recovery relations in Eq. (18) can also be
simplified for a symmetric corrugation.

c1 = −(v1,1 + νv2,2)

C
, (27)

c2 = α1(v1,2 + v2,1), (28)

c4 =
1

⟨
√
a⟩

(v3,11 + νv3,22). (29)

2.3 Discussion of the results

First, we perform a simple consistence check for all the results. For equivalent
plate stiffnesses to be valid for general corrugated structures, they should be
able to reproduce the well-known classical plate stiffnesses when the corru-
gated structure degenerated to be a flat plate, for which we have

φ = ϕ = A = B = 0,
√
a = 1, C = −1, α1 = 1, α2 = 0. (30)

The expressions in Eq. (15) can be simplified as

A11 =
Eh

1− ν2
, A12 = νA11, A22 =

Eh

1− ν2
, A66 =

Eh

2(1 + ν)
,

B11 = 0, B12 = 0, B22 = 0, B66 = 0,

D11 =
Eh3

12(1− ν2)
, D12 = νD11

D22 =
Eh3

12(1− ν2)
, D66 =

Eh3

24(1 + ν)
.

(31)
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which are the well known stiffness formulas for the classical model of isotropic
homogeneous plates.

The bending stiffnesses in Eq. (9) cannot reproduce the case of a flat plate
while those in Eqs. (10) and (11) can. However, none of the extension stiffness
from previous studies can reproduce the case of a flat plate.

For shallow corrugation, we know ϕ ∼ δ ≪ 1 and no specific order can be said
regarding the magnitude of h

ε
. We can use this small parameter to simplify

our formulas. We have

B ∼ δ, C = −
⟨

1√
a

⟩
, α1 =

1

⟨
√
a⟩
, α2 = α1

⟨
h2φ′

12εa

⟩
∼ δ. (32)

The leading terms of the equivalent plate stiffness are

A11 =
Eh

1− ν2
1⟨
1√
a

⟩ , A12 = νA11,

A22 = Eh
⟨√

a
⟩
+ ν2A11, A66 =

µh

⟨
√
a⟩
,

B11 =
Eh

1− ν2
1⟨
1√
a

⟩Bε, B12 = νB11,

B22 = Ehε
⟨√

aϕ
⟩
+ ν2B11, B66 = µhα2,

D11 =
Eh3

12(1− ν2)

1

⟨
√
a⟩
, D12 = νD11

D22 =
Eh3

12

⟨
1√
a

⟩
+ ν2D11, D66 =

µh2

12

⟨√
a
⟩
.

(33)

Note Bij vanish for symmetric corrugations. The above formulas can degener-
ate to those for a flat plate. Comparing to the results from previous studies,
we can see that Seydel’s formulas [24] for D11 and D66 in Eq. (9) can be used
for shallow corrugations. However D12 and D22 are not valid for shallow cor-
rugations. Briassoulis’ formulas [18] for D11 and D12 in Eq. (10) are valid for
shallow corrugations but D22 and D66 are not valid. The formulas of Xia et
al. [19] in Eq. (11) can be used for shallow corrugations except D22.

For most corrugated structures, we have h/ε ≪ 1. This small parameter can
be used to simplify our formulas. We have

C ≈ −12 ⟨φA⟩ ε
2

h2
, α1 ≈

1

⟨
√
a⟩

(34)
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The leading terms of equivalent plate stiffnesses become:

A11 =
Eh3

12(1− ν2)ε2 ⟨φA⟩
, A12 = νA11, A22 = Eh

⟨√
a
⟩
,

A66 =
µh

⟨
√
a⟩
, B11 =

Eh3B
12(1− ν2)ε ⟨φA⟩

, B12 = νB11,

B22 = Ehε
⟨
ϕ
√
a
⟩
, B66 =

µh3

12ε

⟨
φ′

a

⟩
⟨
√
a⟩
,

D11 =
Eh3

12(1− ν2)

(
B2

⟨φA⟩
+

1

⟨
√
a⟩

)
, D12 = νD11,

D22 = Ehε2
⟨
ϕ2
√
a
⟩
, D66 =

µh3

12

⟨√
a
⟩
.

(35)

As follows from Eq. (35), among the extension stiffnesses the largest ones are
A22 and A66, while A11 and A12 contain small factor (h/ε)2:

A11 ∼ A12 ∼
(
h

ε

)2

A22 ∼
(
h

ε

)2

A66. (36)

This corresponds to softness of the corrugated plate in the direction of corru-
gation. Similarly, for bending stiffnesses, the largest stiffness is D22, and

D11 ∼ D12 ∼
(
h

ε

)2

D22 ∼ D66. (37)

Among the coupling stiffnesses the largest one is B22, while

B11 ∼ B12 ∼
(
h

ε

)2

B22 ∼ B66. (38)

The equivalent plate stiffness for symmetric corrugations have the form:

A11 =
Eh3

12(1− ν2)ε2 ⟨ϕ2
√
a⟩
, A12 = νA11, A22 = Eh

⟨√
a
⟩
,

A66 =
µh

⟨
√
a⟩
, D11 =

Eh3

12(1− ν2) ⟨
√
a⟩
, D12 = νD11,

D22 = Ehε2
⟨
ϕ2
√
a
⟩
, D66 =

µh3

12

⟨√
a
⟩
.

(39)

Comparing to the results from previous studies, we can see that Seydel [24]
obtained the correct bending stiffnesses except D12 in Eq. (9), Briassoulis [18]
obtained the correct bending stiffnesses except D22 and D66 in Eq. (10). Xia
et al. [19] obtained the correct bending stiffnesses except D22 in Eq. (11).
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As far as extension stiffnesses are concerned, the commonly accepted formulas
in 1960-70s, Eq. (12), are correct if T 2 is defined as half of the average of

x23 over the corrugated profile, i.e. T 2 =
⟨x2

3

√
a⟩

2
. The modified extension

stiffnesses in Eq. (13) by Briassoulis [18] are in fact wrong. The first three
formulas of the extension stiffnesses by Xia et al. [19] in Eq. (14) are correct
if higher order term in A11 is neglected. A22 is approximately correct as the
term 1

1−ν2
− 1−ν2

4(1+ν)2
is very close to unity for normal materials.

Most of the previous studies focused on obtained the equivalent plate stiff-
nesses without paying attention to the local stress/strain field within the orig-
inal corrugated structure, expect Briassoulis attempted to recover the local
stress based on the forces and moments obtained from the equivalent plate
analysis in [18]. Such relations are derived based on an assumed sinusoidal
corrugated profile. However, as we have already shown that half of the equiv-
alent plate bending and extension stiffnesses from [18] are not correct. The
accuracy of the recovery relations can only become worse. Hence, Briassoulis’
recovery relations are not listed here and compared with ours.

3 Shell Formulation of Corrugated Structures

The thin-walled corrugated structure can be accurately described by the clas-
sical shell theory. Here we summarize the basic equations. We choose a Carte-
sian coordinate system xi with basic vectors êi. Throughout the paper, Latin
indices run through the values 1, 2, and 3; Greek indices assume values 1 and
2, and summation is conducted over repeated indices except where explicitly
indicated. The position vector of the shell mid-surface can be considered as a
function of coordinates x1 and x2:

r(x1, x2) = x1ê1 + x2ê2 + x3ê3. (40)

If there are corrugations along both x and y directions, x3 is a function of
both coordinates x1 and x2. Herein, we restrict our consideration to the case
of periodic corrugations in one direction, x, as in Fig. 2. The tangent vectors
aα of the shell surface can be obtained by differentiating the position vector
with respect to xα, aα = ∂r/∂xα, so that

a1 = ê1 + φ(x)ê3, a2 = ê2, (41)

with

φ(x) =
dx3(x)

dx
. (42)

For brevity uses, we also write aα = riαêi, which implies

r11 = 1, r21 = 0, r31 = φ(x), r12 = 0, r22 = 1, r32 = 0. (43)
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The metric tensor of the shell surface, aαβ, defined as

aαβ = aα · aβ, (44)

that is

a11 = 1 + φ2, a12 = 0, a22 = 1, a = det ∥aαβ∥ = 1 + φ2. (45)

The contravariant components of the surface metric tensor aαβ are the com-
ponents of the inverse matrix to the matrix ∥aαβ∥, i.e. aαβaγβ = δαγ, δαγ being
the two-dimensional Kronecker symbol. We have from Eq. (45)

a11 =
1

1 + φ2
, a12 = 0, a22 = 1. (46)

The normal vector of the shell mid-surface is:

n̂ =
a1 × a2

|a1 × a2|
=

−φ√
a
ê1 +

1√
a
ê3, (47)

or in terms of the components,

n1 = − φ√
a
, n2 = 0, n3 =

1√
a
. (48)

The second quadratic form of the shell mid-surface is defined as

bαβ =
∂aα

∂xβ
· n̂. (49)

Hence, we have

b11 =
1√
a

dφ

dx
, b12 = b22 = 0,

b11 =
1

a3/2
dφ

dx
, b21 = b12 = b22 = 0,

(50)

where bαβ = aαγbγβ.

The Christoffel symbols can be found from the equation:

Γγ
αβ =

1

2
aγδ

(
∂aαδ
∂xβ

+
∂aβδ
∂xα

− ∂aαβ
∂xδ

)
. (51)

Using Eq. (45), we obtain that all components of Γγ
αβ vanish except

Γ1
11 =

1

2a

da

dx
=

1

2

dlna

dx
(52)
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According to the general theory of periodic structures [43, 44] (see also [45]
chapter 17), the functions describing the behavior of the shell should be con-
sidered as functions of the cell coordinate X, and slow coordinates x, and y.
All the geometric characteristics we just introduced are functions of X only,
e.g.

x3 =εϕ(X), φ(X) =
dϕ(X)

dX
,

b11 =
1

ε
√
a

dφ

dX
, b11 =

1

εa3/2
dφ

dX
, Γ1

11 =
1

2ε

dlna

dX
.

(53)

Let ui(X, x, y) be the components of the displacement vector. The extension
strains γαβ and bending strains ραβ are expressed in terms of ui as follows [45]:

2γαβ = riα
∂ui
∂xβ

+ riβ
∂ui
∂xα

2ραβ =
∂

∂xβ

(
ni
∂ui

∂xα

)
+

∂

∂xα

(
ni
∂ui

∂xβ

)
− 2Γγ

αβni
∂ui

∂xγ
+ θ

(
eγαb

γ
β + eγβb

γ
α

)
(54)

where eαβ denotes surface Levi-Civita tensor (e11 = e22 = 0, e12 = −e21 =
√
a).

θ is the angle of rotation of the surface elements around the normal vector:

θ =
1

2
√
a

(
ri1
∂ui
∂x2

− ri2
∂ui
∂x1

)
(55)

Note that ui = ui because ui are the displacement components in the Cartesian
coordinate systems êi. While γαβ and ραβ are tensor components in surface
coordinates, and, therefore the components with upper indices acquire addi-
tional metric factors. Because X is related with x = x1 according to Eq. (2),
the derivative with respect to x1 can be expressed as

∂ui
∂x1

=
∂ui
∂x

=
∂ui
∂X

∂X

∂x
|x=const +

∂ui
∂x

|X=const =
1

ε
u′i + ui,1, (56)

with u′i =
∂ui

∂X
|x=const and ui,1 = ∂ui

∂x
|X=const. We also denote ui,2 =

∂ui

∂x2
= ∂ui

∂y
.

The elastic behavior of the shell is governed by its strain energy density which
is given by the following expression:

Φ =µh
(
σ
(
aαβγαβ

)2
+ aαβaγδγαγγβδ

)
+
µh3

12

(
σ
(
aαβραβ

)2
+ aαβaγδραγρβδ

)
.

(57)

Here in Eq. (57) µ = E/2(1 + ν) is the shear modulus, ν the Poisson’s ratio,
and σ = ν/(1− ν). The first part is the extension energy and second part the
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bending energy. The strain energy of the unit cell can be written as

J =
⟨
Φ
√
a
⟩

=

⟨
µh

√
a

(
σ
(
1

a
γ11 + γ22

)2

+
1

a2
γ211 +

2

a
γ212 + γ222

)⟩

+

⟨
µh3

12

√
a

(
σ
(
1

a
ρ11 + ρ22

)2

+
1

a2
ρ211 +

2

a
ρ212 + ρ222

)⟩

=

⟨
µh

√
a

(
(1 + σ)

(
γ11
a

+ νγ22

)2

+
(
1 + 2σ

1 + σ

)
γ222 +

2

a
γ212

)⟩

+

⟨
µh3

12

√
a

(
(1 + σ)

(
ρ11
a

+ νρ22

)2

+
(
1 + 2σ

1 + σ

)
ρ222 +

2

a
ρ212

)⟩
(58)

with ν = σ/(1 + σ). Here the material parameters µ, σ and the shell thickness
h could be functions ofX, but for simplicity, we assume that they are constant.

4 Asymptotic Analysis of the Shell Strain Energy

To model the corrugated structure by an equivalent plate, we start by setting
for the shell displacements the presentation following from the general theory
of periodic structures [43, 44]:

uα(X, x, y) =vα(x, y) + εψα(X, x, y),

u3(X, x, y) =v3(x, y) + εψ3(X, x, y).
(59)

In fact, this is a short cut, and Eq. (59) can be derived by the variational
asymptotic method [45], chapter 17.2. In Eq. (59), vi have the meaning of the
effective plate displacements, and ψi are some functions which are periodic in
X. Without loss of generality, we can define vi as the average of ui over the
cell:

vi(x, y) = ⟨ui(X, x, y)⟩ . (60)

Then, obviously,

⟨ψi(X, x, y)⟩ = 0. (61)

Substituting Eq. (59) into Eq. (54) and using Eq. (56), we obtain for the strain
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measures:

γ11 =v1,1 + φv3,1 + ψ′
1 + φψ′

3 + ε (ψ1,1 + φψ3,1) ,

2γ12 =v1,2 + v2,1 + φv3,2 + ψ′
2 + ε (ψ1,2 + ψ2,1 + φψ3,2) ,

γ22 =v2,2 + εψ2,2,

ρ11 =
1

ε
U ′
1 −

1

2ε
(ln a)′U1 + U1,1 =

√
a

ε

(
U1√
a

)′

+ U1,1,

2ρ12 =U1,2 + U2,1 +
1

ε
U ′
2 +

φ′

εa3/2
√
aθ,

ρ22 =U2,2.

(62)

Here comma in indices denotes derivatives with respect to xα, prime the deriva-
tive with respect to X. Besides, we introduced the notations,

U1 = n1(v1,1 + ψ′
1) + n3(ψ

′
3 + v3,1) + ε(n1ψ1,1 + n3ψ3,1), (63)

U2 = n1v1,2 + n3v3,2 + ε(n1ψ1,2 + n3ψ3,2). (64)

Rotation θ can be found from Eq. (55),

2
√
aθ = v1,2 − v2,1 + φv3,2 − ψ′

2 + ε(ψ1,2 − ψ2,1 + φψ3,2).

Our objective is to construct an equivalent plate model, i.e. the equations for
vi. To this end, assuming that vi are known, we seek for the expression of ψi

in terms of vi and their derivatives.

4.1 Step 1: discarding doubtful terms

Following the variational asymptotic method, we drop all the terms that are
asymptotically small in terms of known small parameters in the energy func-
tional. To model the corrugated structure as a flat plate, we implicitly as-
sume that the corrugated plate is formed by many cells, we have ε/L ≪ 1,
where L is the characteristic length of macroscopic deformations. Due to the
smallness of ε/L, we can drop in the energy the terms associated with deriva-
tives ψ1,1 + φψ3,1 in γ11, terms associated with ψ2,1 in 2γ12, terms associated
with U1,1 in ρ11, terms associated with U2,1 in 2ρ12, terms associated with
n1ψ1,1+n3ψ3,1 in U1, terms associated with ψ2,1 in 2

√
aθ, and U2,2 in ρ22. How-

ever, the terms containing (ψ′
1+φψ

′
3)ψ2,2, ψ

′
2 (ψ1,2 + φψ3,2), (n1ψ

′
1,2+n3ψ

′
3,2)ψ

′
2

and (n1ψ1,2 + n3ψ3,2)
′ψ′

2 are doubtful as we do not know the relative orders of
ψi and there is no clear larger terms than these terms. As suggested in [45],
we will first discard them and later to check whether they are indeed asymp-
totically smaller that the terms we keep. The leading terms of the energy in
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the first approximation are

J0 =

⟨
µh

√
a

(1 + σ)

(
γ011
a

+ νγ022

)2

+
(
1 + 2σ

1 + σ

) (
γ022
)2

+
2

a

(
γ012
)2⟩

+

⟨
µh3

12

√
a

(1 + σ)

(
ρ011
a

+ νρ022

)2

+
(
1 + 2σ

1 + σ

)(
ρ022
)2

+
2

a

(
ρ012
)2⟩

(65)

with

γ011 =v1,1 + φv3,1 + ψ′
1 + φψ′

3,

2γ012 =v1,2 + v2,1 + φv3,2 + ψ′
2,

γ022 =v2,2,

ρ011 =

√
a

ε

(
U0
1√
a

)′

,

2ρ012 =
1

ε
U0
2
′
+

φ′

εa3/2
√
aθ0,

ρ022 =0.

(66)

and

U0
1 = n1(v1,1 + ψ′

1) + n3(ψ
′
3 + v3,1)

U0
2 = n1v1,2 + n3v3,2

2
√
aθ0 = v1,2 − v2,1 + φv3,2 − ψ′

2

(67)

Substituting Eq. (67) into the bending strains in Eq. (66) and considering

n3 − n1φ =
√
a n′

1 =
−φ′

a3/2
n′
3 =

−φφ′

a3/2
. (68)

we have

ρ011 =

√
a

ε

(
ψ′
3 −

φ

a
γ011

)′
2ρ012 = − φ′

2εa3/2
(2γ012) (69)

γ022, ρ
0
22 do not involve ψi, 2γ

0
12, 2ρ

0
12 involve ψ2 only, and γ

0
11, ρ

0
11 involve ψ1, ψ3.

Let us focus on solving ψ2 first. The strain energy in Eq. (65) related with ψ2

is:

J2 =

⟨
µh

1

2
√
a

((
2γ012

)2
+
h2

12

(
2ρ012

)2)⟩
. (70)

We need to minimize 2γ012, 2ρ
0
12 in Eq. (70) over periodic functions ψ2(X)

subject to the constraints Eq. (61). The constraints can be taken care of
by introducing the Lagrange multipliers. The corresponding Euler-Lagrange
equation is: (

1√
a

(
2γ012 −

h2

12
2ρ012

φ′

2εa3/2

))′

− λ2 = 0. (71)
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along with boundary conditions

[ψ2] = 0,

[
1√
a

(
2γ012 −

h2

12
2ρ012

φ′

2εa3/2

)]
= 0. (72)

with the square brackets denoting the difference between the end values, for
example [ψ2] = ψ2(

1
2
) − ψ2(−1

2
). The second condition in Eq. (72) leads to

λ2 = 0. Hence:
1√
a

(
2γ012 −

h2

12
2ρ012

φ′

2εa3/2

)
= c2. (73)

Thus:

2γ012 =

√
ac2

1 + φ′2h2

48ε2a3

, (74)

v1,2 + v2,1 + φv3,2 + ψ′
2 =

√
ac2

1 + φ′2h2

48ε2a3

. (75)

Integrating Eq. (75) over the cell length, we obtain the constant c2:

v1,2 + v2,1 =

⟨ √
a

1 + φ′2h2

48ε2a3

⟩
c2, (76)

c2 = α1(v1,2 + v2,1). (77)

Integrating Eq. (75) with respect to X both sides, we have

ψ2 = −X(v1,2 + v2,1)− ϕv3,2 +
∫ X

0

√
ac2

1 + φ′2h2

48ε2a3

dY + const. (78)

Considering the constraint in Eq. (61), we can integrate both sides of Eq. (78)
over the cell length to solve for the constant, and the final expression for ψ2 is

ψ2 = −X(v1,2+ v2,1)−ϕv3,2+
∫ X

0

√
ac2

1 + φ′2h2

48ε2a3

dY −
⟨∫ X

0

√
ac2

1 + φ′2h2

48ε2a3

dY

⟩
. (79)

The strain energy in Eq. (65) related with ψ1 and ψ3 is:

J1 =

⟨
µh

√
a (1 + σ)

(
γ011
a

+ νγ022

)2

+
µh3

12

√
a (1 + σ)

(
ρ011
a

+ νρ022

)2⟩
. (80)

Similarly, we use Lagrange multiplier to take care of the constraints of ψ1 and
ψ3 in Eq. (61). The corresponding Euler-Lagrange equations are:(

1√
a

(
γ011
a

+ νγ022

)
+

h2

12ε

(
ρ011
a

+ νρ022

)′
φ

a

)′

− λ1 = 0,(
φ√
a

(
γ011
a

+ νγ022

)
− h2

12ε

(
ρ011
a

+ νρ022

)′
1

a

)′

− λ3 = 0.

(81)
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along with boundary conditions

[ψ1] = 0, [ψ′
1] = 0,

[
1√
a

(
γ011
a

+ νγ022

)
+

h2

12ε

(
ρ011
a

+ νρ022

)′
φ

a

]
= 0,

[ψ3] = 0, [ψ′
3] = 0,

[
φ√
a

(
γ011
a

+ νγ022

)
− h2

12ε

(
ρ011
a

+ νρ022

)′
1

a

]
= 0,[

ρ011
a

+ νρ022

]
= 0.

(82)

The third and sixth conditions in Eq. (82) leads to λ1 = λ3 = 0. Hence:

1√
a

(
γ011
a

+ νγ022

)
+

h2

12ε

(
ρ011
a

+ νρ022

)′
φ

a
= c1, (83)

φ√
a

(
γ011
a

+ νγ022

)
− h2

12ε

(
ρ011
a

+ νρ022

)′
1

a
= c3. (84)

Integrate (φ× (83)− (84)) over the cell length with considering the seventh
conditions in Eq. (82) conclude:

c3 = 0. (85)

Then Eqs. (83) and (84) can be simplified as:(
ρ011
a

+ νρ022

)′

= c1
12φε

h2
, (86)(

γ011
a

+ νγ022

)
=

c1√
a
. (87)

Integrate Eq. (86) (
ρ011
a

+ νρ022

)
= c1

12x3
h2

+ c4, (88)

Rewrite Eq. (88) considering Eq. (69)(
ψ′
3 −

φ

a
γ011

)′
= ε

(
c1
12

h2
x3
√
a+ c4

√
a
)
. (89)

Integrate over the cell length with the fact
[
ψ′
3 − φ

a
γ011
]
= 0, c4 is:

c4 = −12

h2
c1
⟨x3

√
a⟩

⟨
√
a⟩

. (90)

Integrate Eq. (89) considering c4,

ψ′
3 −

φ

a
γ011 = −12ε2

h2
c1A+ c5. (91)
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φ× (87) + (91) gives

ψ′
3 + νφγ022 =

c1φ√
a
− 12ε2

h2
c1A+ c5, (92)

Integrating over the cell length, we obtain

c5 = −c1
⟨
φ√
a

⟩
+

12ε2

h2
c1 ⟨A⟩ . (93)

Substitute c5 into Eq. (92):

ψ′
3 = −νφγ022 + c1

(
φ√
a
−
⟨
φ√
a

⟩)
− 12ε2

h2
c1(A− ⟨A⟩). (94)

Rewrite Eq. (87) as

v1,1 + φv3,1 + ψ′
1 + φψ′

3 = c1
√
a− νaγ022, (95)

Substituting Eq. (94) into Eq. (95), we have

ψ′
1 = −(v1,1+νv2,2+φv3,1)+c1

(
1√
a
+ φ

⟨
φ√
a

⟩)
+
12ε2

h2
c1 (φA− φ ⟨A⟩) (96)

Integrate over the cell length:

v1,1 + νv2,2 =
12ε2

h2
c1 ⟨φA⟩+ c1

⟨
1√
a

⟩
, (97)

which can be used to solve for c1 as

c1 = −(v1,1 + νv2,2)

C
. (98)

Integrating Eq. (94) both sides with respect to X, we have

ψ3 =− νϕγ022 + c1

(∫ X

0

φ√
a
dY −X

⟨
φ√
a

⟩)

− 12ε2

h2
c1

(∫ X

0
AdY −X ⟨A⟩

)
+ const.

(99)

Considering the constraint in Eq. (61), we can integrate both sides of Eq. (99)
over the cell length to solve for the constant, and the final expression for ψ3 is

ψ3 =− νϕγ022 + c1

(∫ X

0

φ√
a
dY −

⟨∫ X

0

φ√
a
dY

⟩
−X

⟨
φ√
a

⟩)

− 12ε2

h2
c1

(∫ X

0
AdY −

⟨∫ X

0
AdY

⟩
−X ⟨A⟩

)
.

(100)
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Integrating Eq. (96) both sides with respect to X, we have

ψ1 =− (Xv1,1 + νXv2,2 + ϕv3,1) + c1

(∫ X

0

1√
a
dY + ϕ

⟨
φ√
a

⟩)

+
12ε2

h2
c1

(∫ X

0
φAdY − ϕ ⟨A⟩

)
+ const

(101)

Considering the constraint in Eq. (61), we can integrate both sides of Eq. (101)
over the cell length to solve for the constant, and the final expression for ψ1 is

ψ1 =− (Xv1,1 + νXv2,2 + ϕv3,1)

+ c1

(∫ X

0

1√
a
dY −

⟨∫ X

0

1√
a
dY

⟩
+ ϕ

⟨
φ√
a

⟩)

+
12ε2

h2
c1

(∫ X

0
φAdY −

⟨∫ X

0
φAdY

⟩
− ϕ ⟨A⟩

) (102)

4.2 Step 2: corrected with doubtful terms

Inspecting Eqs. (79) and (102), we find out that there are ϕv3,α contained in
these two functions. This means we cannot drop the aforementioned terms,
(ψ′

1 +φψ′
3)ψ2,2, ψ

′
2 (ψ1,2 + φψ3,2), (n1ψ

′
1,2 +n3ψ

′
3,2)ψ

′
2, and (n1ψ1,2 +n3ψ3,2)

′ψ′
2

completely, but should keep the major contributions contained in these terms.
In the same way, we also need to recover those terms which are of similar
orders into the strain expressions. Thus, for γ011, we recover −x3v3,11 from the
neglected term εψ1,1

γ011 = v1,1 − x3v3,11 + φv3,1 + ψ′
1 + φψ′

3 (103)

For 2γ012, we recover −2x3v3,12 from the neglected terms ε(ψ1,2 + ψ2,1)

2γ012 = v1,2 + v2,1 − 2x3v3,12 + φv3,2 + ψ′
2 (104)

For γ022, we recover −x3v3,22 from the neglected terms εψ2,2

γ022 = v2,2 − x3v3,22 (105)

For ρ011, we recover (n3 − n1φ)v3,11 =
√
av3,11 from the neglected term U1,1

ρ011 =

√
a

ε

(
U0
1√
a

)′

+
√
av3,11 (106)

For 2ρ012, we recover (
√
a+ n3)v3,12 from the neglected terms in U1,2 + U2,1

2ρ012 = (
√
a+ n3)v3,12 +

1

ε
U0
2
′
+

φ′

εa3/2
√
aθ0 (107)
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For ρ022, we recover n3v3,12 from the neglected terms in U2,2

ρ022 = n3v3,22 (108)

For U0
1 , we recover −x3v3,11 from the neglected term εψ1,1

U0
1 = n1(v1,1 − x3v3,11 + ψ′

1) + n3(ψ
′
3 + v3,1) (109)

For U0
2 , we recover −x3v3,12 from the neglected term εψ1,2

U0
2 = n1(v1,2 − x3v3,12) + n3v3,2 (110)

For θ0, the major terms contributed from the neglected term ε(ψ1,2 − ψ2,1)
cancel each other, so that

2
√
aθ0 = v1,2 − v2,1 + φv3,2 − ψ′

2 (111)

Using Eqs. (109), (110), and (111), we can rewrite the bending strains as

ρ011 =

√
a

ε

(
ψ′
3 −

φ

a
γ011

)′
+
√
av3,11,

2ρ012 =2
√
av3,12 −

φ′

2εa3/2
(2γ012),

ρ022 =
1√
a
v3,22.

(112)

Substituting this new set of strain measures into Eq. (65), we need to carry
out the solution procedure again. Most of the equations starting Eq. (70) to
Eq. (102) remain the same, except the following changes.

Eq. (74) is replaced with

2γ012 =

√
ac2 +

h2φ′v3,12
12εa

1 + φ′2h2

48ε2a3

. (113)

Eq. (75) is replaced with

v1,2 + v2,1 − 2x3v3,12 + φv3,2 + ψ′
2 =

√
ac2 +

h2φ′v3,12
12εa

1 + φ′2h2

48ε2a3

. (114)

Eq. (76) is replaced with

v1,2 + v2,1 =

⟨ √
a

1 + φ′2h2

48ε2a3

⟩
c2 +

⟨ h2φ′

12εa

1 + φ′2h2

48ε2a3

⟩
v3,12, (115)
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with c2 defined in Eq. (20).

Eq. (78) should be replaced with

ψ2 = −X(v1,2+v2,1)−ϕv3,2+2
∫ X

0
x3dY v3,12+

∫ X

0

√
ac2 +

h2φ′v3,12
12εa

1 + φ′2h2

48ε2a3

dY +const.

(116)

Eq. (79) should be replaced with

ψ2 =−X(v1,2 + v2,1)− ϕv3,2 + 2

(∫ X

0
x3dY −

⟨∫ X

0
x3dY

⟩)
v3,12

+
∫ X

0

√
ac2 +

h2φ′v3,12
12εa

1 + φ′2h2

48ε2a3

dY −
⟨∫ X

0

√
ac2 +

h2φ′v3,12
12εa

1 + φ′2h2

48ε2a3

dY

⟩
.

(117)

Eq. (89) should be replaced with

(
ψ′
3 −

φ

a
γ011

)′
= ε

(
c1
12

h2
x3
√
a+ c4

√
a− (v3,11 + νv3,22)

)
. (118)

with c4 defined in Eq. (21).

Eq. (91) should be replaced with

ψ′
3 −

φ

a
γ011 = −12ε2

h2
c1A+ ε

(∫X
0

√
adY

⟨
√
a⟩

−X

)
(v3,11 + νv3,22) + c5. (119)

Eq. (92) should be replaced with

ψ′
3+νφγ

0
22 =

c1φ√
a
− 12ε2

h2
c1A+ ε

(∫X
0

√
adY

⟨
√
a⟩

−X

)
(v3,11+νv3,22)+ c5. (120)

Eq. (93) should be replaced with

c5 = −c1
⟨
φ√
a

⟩
+

12ε2

h2
c1 ⟨A⟩ − ε

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

(v3,11 + νv3,22). (121)

Here, notice ⟨φx3⟩ = 0.
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Eq. (94) should be replaced with

ψ′
3 = −νφγ022 + c1

(
φ√
a
−
⟨
φ√
a

⟩)
− 12ε2

h2
c1(A− ⟨A⟩)

+ ε

∫X0 √
adY −

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

−X

 (v3,11 + νv3,22).

(122)

Eq. (95) should be replaced with

v1,1 − x3v3,11 + φv3,1 + ψ′
1 + φψ′

3 = c1
√
a− νaγ022. (123)

Eq. (96) should be replaced with

ψ′
1 =− (v1,1 + νv2,2 + φv3,1) + x3(v3,11 + νv3,22)

+ c1

(
1√
a
+ φ

⟨
φ√
a

⟩)
+

12ε2

h2
c1 (φA− φ ⟨A⟩)

− ε

φ ∫X0 √
adY − φ

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

− φX

 (v3,11 + νv3,22).

(124)

Eq. (97) should be replaced with

v1,1 + νv2,2 =
12ε2

h2
c1 ⟨φA⟩+ εB(v3,11 + νv3,22) + c1

⟨
1√
a

⟩
. (125)

with the constant B

B =

⟨φX⟩ −

⟨
φ
∫X
0

√
adY

⟩
⟨
√
a⟩

 =
⟨
√
a⟩
∫ 1

2

− 1
2

Xdϕ−
∫ 1

2

− 1
2

∫X
0

√
adY dϕ

⟨
√
a⟩

=
⟨
√
a⟩
(
Xϕ|

1
2

− 1
2

− ⟨ϕ⟩
)
−
∫X
0

√
adY ϕ|

1
2

− 1
2

+ ⟨
√
aϕ⟩

⟨
√
a⟩

=
⟨
√
aϕ⟩

⟨
√
a⟩

.

(126)

Eq. (98) should be replaced with the definition in Eq. (19).
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Eq. (99) should be replaced with

ψ3 =− νϕv2,2 + ν
∫ X

0
φx3dY v3,22 + c1

(∫ X

0

φ√
a
dY −X

⟨
φ√
a

⟩)

− 12ε2

h2
c1

(∫ X

0
AdY −X ⟨A⟩

)
+ const

+ ε

∫X0 ∫ Y
0

√
adZdY −X

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

− X2

2

 (v3,11 + νv3,22).

(127)

Eq. (100) should be replaced with

ψ3 =− νϕv2,2 + ν

(∫ X

0
φx3dY −

⟨∫ X

0
φx3dY

⟩)
v3,22

+ c1

(∫ X

0

φ√
a
dY −

⟨∫ X

0

φ√
a
dY

⟩
−X

⟨
φ√
a

⟩)

− 12ε2

h2
c1

(∫ X

0
AdY −

⟨∫ X

0
AdY

⟩
−X ⟨A⟩

)

+ ε

∫X0 ∫ Y
0

√
adZdY −

⟨∫X
0

∫ Y
0

√
adZdY

⟩
−X

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

− X2

2
+

1

24

 (v3,11 + νv3,22).

(128)

Eq. (101) should be replaced with

ψ1 =− (Xv1,1 + νXv2,2 + ϕv3,1) +
∫ X

0
x3dY (v3,11 + νv3,22)

+ c1

(∫ X

0

1√
a
dY + ϕ

⟨
φ√
a

⟩)
+

12ε2

h2
c1

(∫ X

0
φAdY − ϕ ⟨A⟩

)
+ const

− ε

∫X0 φ
∫ Y
0

√
adZdY − ϕ

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

−
∫ X

0
φXdY

 (v3,11 + νv3,22).

(129)
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Eq. (102) should be replaced with

ψ1 =− (Xv1,1 + νXv2,2 + ϕv3,1) +

(∫ X

0
x3dY −

⟨∫ X

0
x3dY

⟩)
(v3,11 + νv3,22)

+ c1

(∫ X

0

1√
a
dY −

⟨∫ X

0

1√
a
dY

⟩
+ ϕ

⟨
φ√
a

⟩)

+
12ε2

h2
c1

(∫ X

0
φAdY −

⟨∫ X

0
φAdY

⟩
− ϕ ⟨A⟩

)

− ε

∫X0 φ
∫ Y
0

√
adZdY −

⟨∫X
0 φ

∫ Y
0

√
adZdY

⟩
− ϕ

⟨∫X
0

√
adY

⟩
⟨
√
a⟩

−
∫ X

0
φXdY +

⟨∫ X

0
φXdY

⟩)
(v3,11 + νv3,22).

(130)

4.3 A short cut derivation

The same results can be derived in a more intuitive and straightforward way,
starting from the assumption that the shell displacements can be presented in
the form:

uα(X, x, y) =vα(x, y)− x3(X)v3,α + εψ∗
α(X, x, y)

u3(X, x, y) =v3(x, y) + εψ∗
3(X, x, y)

(131)

Then the derivation proceeds as follows for shell strains. We have

γ11 =v1,1 − x3v3,11 + ψ∗
1
′ + φψ∗

3
′ + ε

(
ψ∗
1,1 + φψ∗

3,1

)
,

2γ12 =v1,2 + v2,1 − 2x3v3,12 + ψ∗
2
′ + ε

(
ψ∗
1,2 + ψ∗

2,1 + φψ∗
3,2

)
,

γ22 =v2,2 − x3v3,22 + εψ∗
2,2,

ρ11 =
1

ε
U ′
1 −

1

2ε
(ln a)′U1 + U1,1 =

√
a

ε

(
U1√
a

)′

+ U1,1,

2ρ12 =U1,2 + U2,1 +
1

ε
U ′
2 +

φ′

εa3/2
√
aθ,

ρ22 =U2,2,

(132)

with

U1 = n1(v1,1 − x3v3,11 + ψ∗
1
′) + n3ψ

∗
3
′ +

√
av3,1 + ε(n1ψ

∗
1,1 + n3ψ

∗
3,1), (133)

U2 = n1(v1,2 − x3v3,12) + n3v3,2 + ε(n1ψ
∗
1,2 + n3ψ

∗
3,2), (134)

and rotation θ,

2
√
aθ = v1,2 − v2,1 + 2φv3,2 − ψ∗

2
′ + ε(ψ∗

1,2 − ψ∗
2,1 + φψ∗

3,2).
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The extension strains contributing to the leading terms of the extension energy
Eq. (58) are

γ011 =v1,1 − x3v3,11 + ψ∗′
1 + φψ∗

3
′,

2γ012 =v1,2 + v2,1 − 2x3v3,12 + ψ∗
2
′,

γ022 =v2,2 − x3v3,22.

(135)

The bending strains contributing to the leading terms of the bending energy
Eq. (58) are

ρ011 =

√
a

ε

(
ψ′
3 −

φ

a
γ011

)′
+
√
av3,11,

2ρ012 =2
√
av3,12 −

φ′

2εa3/2
(2γ012),

ρ022 =
1√
a
v3,22.

(136)

These leading strain measures are the same as those in Eqs. (103), (74), (105),
and (112) if

εψα = εψ∗
α − x3v3,α εψ3 = εψ∗

3 (137)

With these relations, the displacement field in Eq. (131) is also the same as
those in Eq. (59). The solution procedure for ψ∗

i is exactly same as the second
step in the previous section if the relations in Eq. (137) are plugged into the
equations starting from Eq. (113) all the way to Eq. (130).

5 Equivalent plate energy

Now, everything is ready to compute the equivalent plate energy. It is con-
venient to split the first approximation of the the strain energy in Eq. (65)
into three parts. J1 is associated with energy in Eq. (80), J2 with energy in
Eq. (70), and J3 with energy

J3 =

⟨
µh

√
a(1 + ν)(γ022)

2 +
µh3

12

√
a(1 + ν)(ρ022)

2

⟩
. (138)

Let us compute J1 first. Using Eq. (87) and Eq. (88)

J1 =

⟨
µh

√
a (1 + σ)

(
c1√
a

)2

+
µh3

12

√
a (1 + σ)

(
c1
12x3
h2

+ c4

)2
⟩
. (139)
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Substituting Eq. (21) and Eq. (19) into Eq. (139), J1 becomes,

J1 =

⟨
µh

1√
a
(1 + σ)

(
εB(v3,11 + νv3,22)− (v1,1 + νv2,2)

C

)2

+
µh3

12

√
a (1 + σ)

(
−(v1,1 + νv2,2)

C
12

h2
(x3 − εB)

+

(
1

⟨
√
a⟩

+
12εB
h2C

(x3 − εB)
)
(v3,11 + νv3,22)

)2⟩

=(v1,1 + νv2,2)
2µ(1 + σ)

1

C2

(
h

⟨
1√
a

⟩
+

12

h
ε2 ⟨φA⟩

)

+ (v3,11 + νv3,22)
2µh(1 + σ)

(
ε2B2

C2

⟨
1√
a

⟩
+
h2

12

(
122ε4B2

h4C2
⟨φA⟩+ 1

⟨
√
a⟩

))

− (v1,1 + νv2,2)(v3,11 + νv3,22)µh(1 + σ)

(
2εB
C2

⟨
1√
a

⟩
+

24Bε3

h2C2
⟨φA⟩

)
.

(140)

Note

⟨√
a(x3 − Bε)2

⟩
=
⟨√

ax23
⟩
− ⟨

√
ax3⟩2

⟨
√
a⟩

= ε2 ⟨φA⟩ , ⟨
√
a(x3 − εB)⟩
⟨
√
a⟩

= 0.

(141)

Rewriting Eq. (70)

J2 =
µh

2

⟨
1√
a

(2γ012)2 + h2

12

(
2
√
av3,12 −

φ′

2εa3/2
2γ012

)2
⟩ . (142)

Substituting Eq. (113) and Eq. (20) into Eq. (142),

J2 =(v1,2 + v2,1)
2

µhα2
1

2

⟨ √
a

(1 + φ′2h2

48ε2a3
)

⟩
+ v23,12

µh

2

⟨√
ah2

3
− 1√

a

h4φ′2

122ε2a2
− aα2

2

1 + φ′2h2

48ε2a3

⟩

− (v1,2 + v2,1)v3,12µhα1α2

⟨ √
a

1 + φ′2h2

48ε2a3

⟩
.

(143)

Substituting γ022 in Eq. (135) and ρ022 in Eq. (136) into Eq. (138),

J3 =v
2
2,2µh(1 + ν)

⟨√
a
⟩
+ v23,22µh(1 + ν)

(⟨√
ax23

⟩
+
h2

12

⟨
1√
a

⟩)
− v2,2v3,222µh(1 + ν)

⟨√
ax3

⟩
.

(144)
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If we set

ϵxx = v1,1, ϵyy = v2,2, 2ϵxy = v1,2 + v2,1,

κxx = −v3,11, κyy = −v3,22, κxy = −v3,12,
(145)

in

J =
1

2



ϵxx

ϵyy

2ϵxy

κxx

κyy

2κxy



T 

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66





ϵxx

ϵyy

2ϵxy

κxx

κyy

2κxy



, (146)

We obtain the relations for the equivalent plate stiffnesses as listed in Eq. (15).

6 Recovery relations

The equivalent plate stiffnesses constants can be used as inputs to carry out a
plate analysis, either analytically or numerically, to predict the plate displace-
ment field (vi) and strain field (ϵxx, ϵyy, 2ϵxy, κxx, κyy, 2κxy). This information
can be used first to recover displacement field in the original corrugated shell
using Eq. (59) with ψi solved previously in Eq. (130), (117), and (128). Usually
it is more critical to know the strain field and moment field within the original
corrugated shell which can be obtained from Eq. (135) and Eq. (136) as those
given in Eq. (18). The stress resultants can be recovered using the constitutive
relation corresponding to the strain energy in Eq. (58), which can be used to
further recover the three-dimensional (3D) stresses based on the relations of
the starting shell theory and the three-dimensional elasticity theory. Following
[46], the 3D strain field can be recovered as

Γαβ = γ0αβ + y3ρ
0
αβ, Γα3 = 0,

Γ33 = − ν

1− ν

(
γ011 + γ022 + y3(ρ

0
11 + ρ022)

)
,

(147)

and the 3D stress field can be recovered as

σ11 =
E

1− ν2
(Γ11 + νΓ22),

σ22 =
E

1− ν2
(Γ22 + νΓ11),

σ12 =
E

2(1 + ν)
2Γ12,

σ33 = σ13 = σ23 = 0.

(148)
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with y3 as the thickness coordinate of the shell along the transverse normal
direction.

7 Validation examples

In this section, two shapes of corrugations are studied. One is a sinusoidal
corrugation which represents the symmetric case with no coupling effects,
and the other is a exponential-sinusoidal corrugation which is an example
of the nonsymmetric corrugations thus exhibiting coupling effects. For the
sinusoidal corrugated plate, we also analyzed the original structure directly
using the finite element analysis software ANSYS. The recovered displacement
and strain fields are compared with the present approach.

7.1 Sinusoidal Shape

The mid-surface of sinusoidal shape,

ϕ(X) =
T

ε
sin(2πX), (149)

is characterized by one parameter, T , the rise of the corrugation (Fig. 3). From
the definition of φ(X) (Eq. (6)),

φ(X) =
2πT

ε
cos(2πX). (150)

For numerical values we choose ε = 0.64 m, T = 0.11 m, h = 0.005 m and
material properties are taken to be E = 30 GPa, ν = 0.2, ρ = 7830 kg/m3.
Clearly we have h/ε≪ 1.

The equivalent plate stiffnesses obtained using different approaches are listed
in Table. 1. VAPAS is a code introduced in [47] for equivalent plate modeling
of panels with microstructures starting from the original 3D elasticity theory.
Corrugated structures can be considered as a special case of such panels and
the results obtained can be used as benchmark for the present study. For the
corrugated profile under consideration, ⟨ϕ

√
a⟩ = 0, and there is no extension-

bending coupling. It is seen from Table. 1 that the results obtained by the
present approach are very close to those predicted by VAPAS and Xia et
al. However, the differences between the present approach and the commonly
accepted formulas for A11, A12 are noticeable. Note, in this table, we used
D12 = νD11 from Eq. (10). Formula (13) gives A11 = 39639 N/m, which is
also well off the correct result.
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Table 1
Equivalent plate stiffnesses of sinusoidal corrugation.

Eqs. (9)(12) Xia et al.[19] VAPAS Present

A11 (N/m) 53805 47613 48152 47613

A12 (N/m) 10761 9523 9630 9523

A22 (N/m) 1.8708× 108 1.8708× 108 1.8692× 108 1.8708× 108

A66 (N/m) 5.0113× 107 5.0113× 107 5.0097× 107 5.0113× 107

D11 (N·m) 261.004 261.004 263.972 261.004

D12 (N·m) 52.20 52.20 52.95 52.20

D22 (N·m) 1025270 1068260 1022874 1025540

D66 (N·m) 162.39 162.39 163.38 162.39

A square sinusoidal corrugated plate with 11 corrugations is subjected to a
uniformly distributed load of 50 Pa in ANSYS. Element SURF154 is overlaid
onto element SHELL63 of the corrugated area to enforce the load directions.
To satisfy simply supported boundary conditions, besides constraining out of
plane movements of four edges, the displacements along four edges are under
constraint simultaneously. The deflections of the sinusoidal corrugated plate
is shown in Fig. 4. The analytical equation of the deflection as an orthotropic
plate [48] is in Eq. (151) with D11, D12, D66, D22 obtained previously.

v3(x, y) =
16p0
π6

∞∑
m=1

∞∑
n=1

sin[mπx/r] sin[nπy/s]

mn
(
D11m4

r4
+ 2 (D12+2D66)m2n2

r2s2
+ D22n4

s4

) . (151)

where p0 is the pressure, r, s the length and width of the whole corrugated
plate,m,n the odd number sequence. The local deflections u3 can be recovered
by Eq. (59) and Eq. (128). The local deflections along the center lines of the
corrugated plate (x = 3.52m) obtained by ANSYS and current approach are
shown in Fig. 5. An excellent agreement is achieved.

Furthermore, 3D strain fields can be recovered based on Eq. (147). By choosing
y3 = h/2, 0, − h/2, the top, the middle, and the bottom strain fields of the
shell can be obtained and compared with those from ANSYS respectively.
Again, we choose the position along the center lines of the corrugated plate
(x = 3.52m) to compare Γ22 and Γ33 from ANSYS and current approach, as
shown in Fig. 6 and Fig. 7. Again, one can observe from this figures that
our theory can correctly predict the local fields within the original corrugated
structure.
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Fig. 4. Deflections of a sinusoidal corrugated plate calculated in ANSYS.
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Fig. 5. Deflections along the center line show the good agreement between current
approach and ANSYS.

7.2 Exponential-sinusoidal Shape

In the second example, a non-symmetric corrugated shape is chosen to show
the coupling effects. We use an exponential-sinusoidal function with unit cell
length ε = 1 m,

ϕ(X) = η
(
eSin(2πX) −

⟨
eSin(2πX)

⟩)
, (152)

as sketched in Fig. 8. An additive constant is added to satisfy Eq. (4). A
plot of the dimensionless parameter B22/(Ehε) as a function of η is shown
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Fig. 6. Comparison of Γ22 between ANSYS and current approach.
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Fig. 7. Comparison of Γ33 between ANSYS and current approach..

in Fig. 9. We choose thickness h = 0.005 m and material properties E =
30 GPa, ν = 0.2. Equivalent plate stiffnesses obtained by different approaches
are listed for comparison in Table 2. Since the corrugation is not symmetric,
the rise of the corrugation T in Eq. (12) is measured as half of the total
swing. Apparently, the extension-bending coupling, particularly the coupling
coefficient B22 between v2,2 and v3,22, is not negligible comparing to other
stiffnesses terms as η grows larger. For the other stiffness constants, the four
sets of results also have noticeable differences for which the present approach,
VAPAS and Xia et al. have a better agreement with VAPAS than the results
in Eqs. (9)(12) except A11 and A12.
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Fig. 8. Shapes of nonsymmetric corrugations for different values of parameter η.
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Fig. 9. Coupling coefficient B22/(Ehε) as a function of η.

8 Conclusion

The variational asymptotic method has been used to construct an equivalent
plate model for corrugated structures. The theory handles general corruga-
tion shape as long as original structure is thin and can be described using
the classical shell theory and the length of a single corrugation is small with
respect to the characteristic length of macroscopic deformation of the corru-
gated structure. The present theory not only present a complete set of effective
plate stiffnesses but also the complete set of recovery relations to obtain the
local fields within the corrugated shell. In comparison to other approaches in
the literature for equivalent plate modeling of corrugated structures, the new
points of this work are:

(1) The variational asymptotic method of an asymptotic analysis of the strain
energy does not invoke any ad hoc assumptions.
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Table 2
Equivalent plate stiffnesses of exponential-sinusoidal corrugation (η = 0.1).

Eqs. (9)(12) Xia et al.[19] VAPAS Present

A11 (N/m) 47139 43765 46366 43911

A12 (N/m) 9427.89 8753.09 9273.22 8782.20

A22(N/m) 1.6759× 108 1.7088× 108 1.7072× 108 1.7088× 108

A66 (N/m) 5.5942× 107 5.4865× 107 5.4846× 107 5.4866× 107

B11 (N) N/A N/A 225.98 204.26

B12 (N) N/A N/A 42.644 40.851

B22 (N) N/A N/A 817802 794841

D11 (N·m) 291.364 285.757 296.106 286.707

D12 (N·m) 58.273 57.151 59.679 57.341

D22 (N·m) 1.3297× 106 1.1622× 106 1.1122× 106 1.1157× 106

D66 (N·m) 145.47 148.33 153.29 148.33

(2) A complete set of analytical formulas for stiffnesses of the equivalent
plate including extension-bending coupling stiffnesses are obtained. These
formulas are valid for any corrugated shell with corrugations along one
directions.

(3) We presented the complete set of recovery relations for the displacement,
strain, and stress fields within the original corrugated shell in terms of
the equivalent plate behavior.

The difference of the present approach is demonstrated through a couple of
simple examples.
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