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lowing nonzero strain components:
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Because Poisson’s ratios are all positive, we can conclude
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The possible values af,; for which the material does not fail depend en and
Young’s moduli, and Poisson’s ratios in addition to the rsfith parameters. This
result is clearly different from what one could obtain frame tmaximum stress failure
criterion which is

—Y <099 <Y

In general, the maximum stress criterion and the maximuamstriterion will predict
different results even if the material is linear elastic aphte failure.

6.3.2 Tsai-Hill failure criterion

Maximum stress (strain) criterion applies the failureamitin to individual stress compo-
nents. The clear inconsistency is that the correspondiaggths are measured under uni-
axial stress states by designing the experiments suchrhaboe stress component exists
in the material. However the material in real structuressisally subjected to a multi-axial
stress state with the possibility that all six stress congpdsmexist. By subjecting individ-
ual stress components in Egs. (6.19), (6.20), and (6.2ik)fdlure criterion completely
neglects the interaction among different stress compsnéitr example, a material fails
under uniaxial stress state whep, = X or ooo = Y, however when it is subjected to

vo3 B3
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the biaxial loadingr;; = X andoss = Y simultaneously, the material may have already
failed or is still safe depending on the material.

As a remedy for this deficiency, Hill [61] extended the Misagure criterion to or-
thotropic materials such that

f = F(022—033)2+G(033—011)2+H(011—0'22)2+LU§3+M0%3+NU%2 =1 (622)

with F, G, H, L, M, N as strength parameters for this failure criterion whichcatérated
by experiments. Tsai [62] applied this failure criterionU®FRCs by calibrating these
parameters from tests of the normal strengths in three rmabhf@incipal directions and
shear strengths in three orthogonal planes of symmetnaugsecof its application of com-
posites, we thus call this failure criterion as the Tsai-Hiilure criterion. This criterion
assumes that the material has the same normal strengthhindmstion and compression.
By applying this failure criterion to simple tension testsdashear tests when only one
stress componentis equal to its corresponding strengthlatik other stress components
vanish, we have

(G+ H)X2 =1 for 011 = X and other components vanish
(F+ H)Y2 =1 for o092 = Y and other components vanish
(F+G)Z* =1 for o33 = Z and other components vanish
LR?>=1 for o035 = R and other components vanish
MT? =1 for o013 = T and other components vanish
NS?=1 for 012 = S and other components vanish (6.23)

which can be used to determine the following
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Having measured the tensile strengths in three materiacipal directions and shear
strengths in the three planes of orthotropic symmetry, weesaluate the failure function
fin Eq. (6.22) with the strength parameters determined by@&84) to check whether the
material fails under a general stress stgte

6.3.2.1 Plane-stressreduced Tsai-Hill failure criterion For a thin composite laminate,
we commonly assume that the stress state is plane-stresls inipliesc;s = 0. The Tsai-
Hill failure criterion in Eq. (6.22) is simplified to be

f=(G+ H)o} 4+ (F+ H)os, —2Ho11099 + NoZy = 1 (6.25)
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withG+H = Xz,F+H YZ,N = SL If we furtherassumg = Y, which implies that
the tensile strengths along the two transverse directibasiaidirectional fiber reinforced

composite are equal, we hagél = i according to Eq. (6.24). The Tsai-Hill failure
criterion can be rewritten as
o112 022\%2 011 022 o122
_ (o1 -2y _TiiTee —=) =1 6.26
=%+ (F) %5 (%) (6.26)

Recall that we have assumed that the tensile strength id egoampressive strength
along three principal material directions. This does noeagvith what we measure from
most fiber reinforced composites. In other words, we willdhavtotal of four normal
strengths (two tensile and two compressi%e,Y and X', Y”) for the plane-stress state.
In some applications of the Tsai-Hill failure criterion imE6.26), we substitute tensile
strength to positive normal stress and compressive stigngtegative normal stress. For
example, if the stress stateds; > 0 andose < 0, the Tsai-Hill failure criterion is

expressed as
fe (2)2 N (@)2 _oulon| (2)2 1 (6.27)
X

Y’ X X S
6.3.2.2 Equivalence of Tsai-Hill criterion and Mises crite  rion for isotropic materials
We also want to examine whether the Tsai-Hill failure cigaris equivalent to the Mises
failure criterion for isotropic materials. For isotropi@terials, we havk =Y = Z R =
S = T'. Thus, the 3D Tsai-Hill failure function for isotropic mais can be expressed as

(022 — 033) | (033 —011)? | (011 —022)? | 033  O%3 0%y
f= oxz T a2xz T axz e e te
1 2X
= = | (011 — 022)* + (022 — 033)° + (033 — 011)* + N (033 + 053 + 052)}

2X?2
(6.28)

For it to be equivalent to the Mises failure criterion in E§.10), we requireggf—Q2 =6

or X = +/38, which is the condition for the Mises criterion to be equérgly calibrated
either using the simple tension test or the simple shear test

EXAMPLE 6.6

Strength analysis of a composite lamina: Suppose that a composite layer can be as-
sumed as a homogeneous material. The composite materigrsig strength along
fiber direction asX'=100 ksi, tensile strength along transverse directiol’ a8 ksi,
and in-plane shear strength 8s15 ksi. The material behaves linearly elastic up to
failure. An off-axis lamina is loaded by a tensitg as shown in Figure 6.10. Predict
the maximum allowable as a function of the fiber orientation angleaccording to
the maximum stress criterion, the maximum strain criteramd the Tsai-Hill crite-
rion.

Solution: First, we need to evaluate the stress components in theialateordi-
nate systemuf;) sinceoy is in the problem coordinate systerh We have

g11 = COS2 930’0
0929 = sin2 9300

g12 = —COS 93 sin 9300
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Figure6.10 An off-axis lamina loaded by uniaxial tension.
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According to the maximum stress criterion, the lamina faitenc,;, = X, 092 =
Y, |o12| = S. We have

B X
9 = o 05
Y
op = —s—
0 sin® 65
oy = 5 (6.29)

cos 03 sin 03

oo must be the smallest among the above three values to sdtesfpaximum stress
failure criterion. If the first value is the smallest, the lamfails in the fiber direction
(fiber failure), if the second value is the smallest, the tzarfails in the transverse
direction (matrix failure), if the third value is the smatethe lamina fails due to in-
plane shear (matrix failure). It is noted that becafsis defined betweef°® and90°,
cos A3 sinfz > 0.

To use the maximum strain criterion, we need to computerstriai the material
coordinate system first as

0o .
€11 = = (COS2 93 — V12 SlIl2 93)
E
oo ;.
€99 = o (51n2 05 — 97 cos> 93)
2
o0 .
2e19 = e cos 03 sin 65
12

According to the maximum strain criterion, the lamina failsens; = X.,e90 =
Ye, |2e12] = Sc. Since the material is linear elastic up to failure, we heegtlowable
strains asY. = E%,YE = E%,SE = Gim Using this fact, we have the following three
equations according to the maximum strain criterion.

X
U =
0 cos? 05 — v19 sin” O
Y
O =
0 sin2 93 — V21 cos? 93
ogp = 5 (6.30)

cos 03 sin 63
Again, oy must be the smallest among the above three values to sdiesfpaximum
strain failure criterion. If the first value is the smalleste lamina fails in the fiber
direction (fiber failure), if the second value is the smd]l¢ése lamina fails in the
transverse direction (matrix failure), if the third valgethe smallest, the lamina fails
due to in-plane shear (matrix failure).
Lastly, according to the Tsai-Hill criterion in Eq. (6.26)e have

cos? O300\ > N sin? 6500 ’ cos 03 sin 0300 \ > L[ cos 03 sin 0500\ > _
X Y X S B

which can be solved as

oo = ! (6.31)

2 2
cos? 03 + sin? 03 _ (COS 03 sin O3 )2 + (cos 03 sin O3 )2
X Y X S
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Figure6.11 Strength of an off-axis lamina predicted by different fedlgriteria (Orange - maximum
stress criterion; Red - maximum strain criterion; Blue -idtal criterion).

The predicted strengthy as a function of the fiber orientation anglein Eqgs. (6.29),
(6.30) (to plot these equations, we have assumed= 0.7 andvs; = 0.3), and
(6.31) can be plotted in Figure 6.11. As shown in the plot,rémilts predicted by
the Tsai-Hill failure criterion is the most conservative this case, followed by the
maximum stress failure criterion, and then the maximunirstelure criterion. The
allowableo( predicted by the Tsai-Hill failure criterion is a continuaurve while
the two other criteria predicted piecewise continuous esirvThere are very small
differences between the maximum stress criterion and theénmuan strain criterion
when the fiber orientation is smaller thah°. As indicated by the maximum stress
failure criterion and the maximum strain failure criterjomith the angle increasing
from 0° to 90°, the lamina fails in the fiber direction first, then fails byptane shear,
and finally fails in the transverse direction.

EXAMPLE 6.7

A [£45/0/90]s laminate made of composite layers with lamina consta@hts- 20 x
10% psi, B, = 1.5 x 106 psi, G2 = 10° psi, v12 = 0.29, X = 310 ksi, Y'=9 ksi,
andS=15 ksi. The thickness of each layer is 0.005”. This laminatibject taVy; .
Assume that the composite material fails according to thee-mdl failure criterion.

63 (Degree)
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Compute the maximum allowabl€,, before any of the layers fail. Which layer fails
first?

Solution: First, we need to evaluate the plate stiffness of the larairBg¢cause it is
a symmetric laminate loaded only by the in-plane I10&d, the A matrix is sufficient
for the analysis. As we have learned previously, we can oli&i plane-stress reduced
stiffness matrix) for the composite lamina, then transfofpnaccording to the layup
orientation, and integrate the transform@anatrices through the thickness to obtain

A matrix as
348925 101315 0

A= 101315 348925 0 [b/in

0 0 123805
We can obtain the in-plane plate strains due to the applediAy; as
Ny 3.12983 x 1076
e=A"1¢ 0 3 =<-9.0879x 1077 3 Nyyin/lb
0 0

Sincex = 0, the 3D in-plane strains atg = €. Next, we need to compute the 3D
stresses for each layer. We need to firstaise= Q’z. (Q’ is the@ matrix for each
layer in the laminate coordinate system) to compute 3D stiem the laminate coor-
dinate system, then we need to transform the 3D stressethmtoaterial coordinate
system using. = R, !o’. Following this procedure, we obtain

o11 22.8375

0929 = 2.16249 N11/in
012 445 :F403862

J11 625961

022 = ¢ —0.00172 3 Ny1/in
g19 0 0

011 —16.921

0922 = 4.32671 N11/in
g192 0

90
Next, we need to plug the 3D stresses into the Tsai-Hill faikriterion for each layer,
to compute the maximum allowabl€é,;. For the45° and—45° layers, according to
Eq. (6.26), we have

22.8375]\711)2 N (2.16249]\711)2 | 22.8375 x 2.16249N7, N (4.03862]\711)2

X Y X?

which can be solved a¥;; = +2720 Ib/in.
For the0° layers, we have
62.5961 N1 \ > L (000172 ® 22.8375 x (—0.00172)N?,
X Y X2 N
which can be solved a¥;; = +4952 Ib/in.
For the90° layers, we have
16.921N7; \ > L (—432671N, > 16.921 x (—4.32671)NZ
X Y X2

which can be solved a&,; = +2063 Ib/in. When we increase the load (tensile or
compressive) from 0, th@0° layers will fail first at/Vi; = +2063 Ib/in.

S

=1
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6.3.3 Tsai-Wu failure criterion

Generally speaking, if a failure criterion is stress basexican express the failure function
as

f(o11,022,033,023,013,012) = 1 (6.32)

A simple yet general enough failure criterion which can actdor the difference between
tensile and compressive strengths and interactions amiffegedt stress components for
anisotropic materials was proposed by Tsai and Wu [63]. @ifsrion, commonly called
the Tsai-Wu failure criterion for obvious reasons, can bigterr in a matrix form as below

A" (on o)’ [Fu Fa Fs Fu Fis Fgl (on
Iy 022 022 Fio Iy Faz Foy Ibps Iag| | 022
f F; o33 | ) o3 Fi3 Fa3 F33 F3y P35 F3e| ) o33 1
Fy 023 023 Fiy Fas F3q Fa Fus Fy| | 023
F; 013 013 Fis Faos F3s Fus Fss Fsef | 013
Fg 012 012 | Fie  Fas Fss Fas Fse Fes| (012
(6.33)

It is noted that one can always form a symmetric matrix forghadratic part of the failure
criterion without changing the failure criterion. There artotal of 27 material parameters
(F3, Fi;) to be determined for a general anisotropic material.

Because we assume that the strength of the material doesperid on the sign of shear
stresses, the strength parameters should remain the saanetfrehmaterial is subject to a
positive shear stress or a negative shear stress. If we agbaitthe material is subjected
to o1 and all other stress components vanish, we have

f = Fso12 + Fs603y (6.34)

Since the strength parameters should remain the same wersatierial is subject te- o5

and all other stress components vanish, we will heye= 0. Similarly, we can conclude
that ', = F5 = 0. Now, let us assume that the material is subjected to a sttatsy;;

with all six stress components existing, we obtain the faifuinction asf. If we change
the stress state to lagf; so that all the stress components remain the same exceppwe fli
the sign of shear stress, to beoj, = —o12, we obtain the failure function ag". Since

we have assumed that failure is independent of the sign a@fr Sieess, we should have
f — f* =0, which will help us obtain the following

do12(Fi6011 + Faso22 + F36033 + Fago23 + Fs6013) = 0 (6.35)

Since this equality should be valid for arbitrary valuesha# stress components involved
in this equation, we can conclude thals = Fbs = I35 = Fug = F56 = 0. Similarly, we
can COﬂClUdEFlO = Fos = F35 = Fys = Fy = Foy = F34, = 0.

With these conclusions, we can simplify the failure cridarin Eq. (6.33) to be

[ =Fi011 + Fho0s + F3033 + Fi107, + Fas0ss + Fs3035 + 2F12011022

. ; 5 (6.36)
+ 2F13011033 + 2F53022033 + Fu4053 + Fs5073 + Fge015 = 1

There are a total of2 parameters in this failure criterion. Nine of these parargetan
be calibrated by simple tension, compression, and shets eédrthotropic materials.
Assuming that we have measured the tensile strength alpirection asX, the failure
criterion in Eq. (6.36) should be able to describe the faildue to this simple stress state
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with o1; = X, and all other stress components equal to zero. Substjttitia stress state
into Eq. (6.36), we have
FX+F1X%2=1 (6.37)

Assuming that we have measured the compressive strengtp ajadirection asX”’, the
failure criterion in Eq. (6.36) should be able to descritefdilure due to this simple stress
state witho;; = —X’, and all other stress components equal to zero. Substjtthis
stress state into Eq. (6.36), we have

—F X' +F X% =1 (6.38)
From Egs. (6.37) and (6.38), we can determifieF;; as

1 1 1

Fo= — _ Fiq = —— 6.39

T Xx X U XX (6.39)

Similarly for simple tension and compression tests alengndxs directions, we obtain
1 1 1 1 1

= oy = —— == - = Fy3 = 6.40

2 Y Y,7 22 YY/7 3 Z Z,7 33 ZZ, ( )

For simple shear tests along the three planes of symmetteaddithotropic material,

we have
1 1 1

B2 F55 = T2 Fee = 52
There are three more parameteys, I3, Fbs leftto be determined. Fundamentally speak-
ing, these constants should be determined from tests fegtbi-axial stress states. For
example, to determinéys, we should use a test featuring a stress state, pfand oo,.
Suppose we have tested the material and it fails uager= a andoss; = b and all the
other stress components vanish. According to the Tsai-\lwréacriterion in Eq. (6.36),
we have

Fuy = (6.41)

F1a+F2b+F11a2 —|—2F12ab—|—F22b2 =1 (642)
We obtain
1 — (Fra+ Fob+ Fiia? + Fyob?)

ab

Since there are infinitely many such combined stress stat@hwan break the material
and it is impossible to prove the uniquenesst®$ from the above equation, we could
end up with many values far;». To avoid arbitrariness, we introduce another method to
determineFo, Fis, I3 by requiring that the Tsai-Wu failure criterion reduces &the
Tsai-Hill failure criterion if the tensile strength is edua the compressive strength in the
same direction along three directions (i.&.,= X', Y = Y', Z = Z’). Clearly, under
this condition, we havéy, = F, = F3 = 0 andFy; = 5, Fos = 55, F33 = 5. The
Tsai-Wu failure criterion becomes

(6.43)

X2 Ty T2 TR T T2 T g2 (6.44)
2F12011022 + 2F13011033 + 2530922033

Assume that the Tsai-Hill failure function j§ we have
0= f"—f=2011[F12 + H)o + (Fi3 + G)oss] +

2092 [(Fi2 + H)o11 + (Faz + F)oss)| + (6.45)
2033 [(F13 + G)o11 + (Fas + F)oa2)]
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Since the above equality holds for all combinatiorof, 022, 033, we have

1 1 1
2he="2 =75~ "y

1 1 1
=20 =m " p

1 1 1

Since the main motivation of the Tsai-Wu failure criterientd consider the differences
between tensile and compressive strengths, we can modif{6E®) to be

1 1 1
Wy = — — ——— — ——
BT 77 XX YY!
1 1 1
OFy3 = . .
BTyyr T Xx' zz
1 1 1
OFy; = (6.47)

XX YY' ZZ

Note that the strength parametdfs, Fi3, F»3 obtained using Eq. (6.47) still satisfy the
requirement we used to derive Eq. (6.46) (i.e., the Tsai-&llurie criterion can be reduced
to the Tsai-Hill failure criterionwhelX = X'\ Y =Y', Z = Z').

Until now we have determined all the 12 parameters in the-Waaifailure criterion
using the nine strengths obtained from 3 extension testspfression tests, and 3 shear
tests. The Tsai-Wu failure criterion with parameters giiretEgs. (6.39), (6.40), (6.41)
and (6.47) has the capability to account for different teresnd compressive strengths, and
interaction among different stress components. It can Beced to the Tsai-Hill failure
criterion if the tensile and compressive strengths aremasduo be equal.

If we invoke the plane-stress assumption in the plane;of x5 as we did in CLT, we
will have o33 = 093 = 013 = 0. The Tsai-Wu failure criterion can be further simplified to
be:

f = Fio11 + Fo090 + Fi101; + Fa03y + 2F12011022 + Fo601s (6.48)

with Fy, F11 given in Eq. (6.39)F5, Fas given in Eq. (6.40)Fss given in Eq. (6.41)F12
given in Eq. (6.47). If we further assunie= Y, Z’ = Y’, we have2F, = — 5. The
Tsai-Wu failure criterion under these simplifications canviritten explicitly in terms of
strength parameters as

1 1 1 1 0%1 U%Q 011 022 J12 2
f= (? - Y) ”11+(? - ?) gt () =1 649

When we assume that the compressive strengths are equaltemtile strength, the plane-
stress reduced Tsai-Wu failure criterion is the same asldrepstress reduced Tsai-Hill
failure criterion shown in Eq. (6.26).

EXAMPLE 6.8

A [£45/0/90]s laminate is made of composite layers with lamina const&hts=
20 x 106 psi, By = 1.5 x 10° psi, G12 = 10° psi,v12 = 0.29, X = X’ = 310 ksi,
Y=9 ksi, Y’ = 30 ksi, andS=15 ksi. The thickness of each layer is 0.005". This
laminate is subject t&V;». Assume that the composite material fails according to the
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Tsai-Wu failure criterion. Compute the maximum allowablg, before any of the
layers fail. Which layer fails first?

Solution: First, we need to evaluate the plate stiffness of the lareinBécause it
is a symmetric laminate loaded only by the in-plane 16&d, the extension stiffness
matrix A is sufficient for our analysis. As we have learned previgust/can obtain
plane-stress reduced stiffness matgxor the composite lamina, then transfogh
according to the layup orientation, and integrate the foanged@ matrices through
the thickness to obtaid matrix as

348925 101315 0
A= |101315 348925 0 [b/in
0 0 123805

We can obtain the in-plane plate strains due to the appled\g -, as

0 0
€= A_l 0 = 0 ngin/lb
Ni2 8.07723 x 1076

Sincex = 0, the 3D in-plane strains atg = €. Next, we need to compute the 3D
stresses for each layer. We need to first wse= Q’c. to compute 3D stresses in
the laminate coordinate system, then we need to transfoen3hstresses into the
material coordinate system using = R_!o’.. Following this procedure, we obtain

o11 +79.517

0922 = F4.328 N12/in
012 ) 145 0

J11 0

0929 = 0 nglin

g192 0 8.077

J11 O

0929 = 0 nglin
Jg12 90 —8077

Next, we need to plug the 3D stresses into the Tsai-Wu fadriterion for each layer,
to compute the maximum allowahMé,». For the+45° layers, according to Eq. (6.49),
we have

11 +79.517Ny2)? 4.328N19)?  79.517 x 4.328 N2
(_ - _) (3F4-328N12)+( 12) -l-($ 12) + . 12 =1

Yy Y XX’ Yy’ X?

which can be solved a&;, = F1732.78 Ib/in and N1 = +4158.82 Ib/in. This
implies that the 45 layer will fail wheiV;5 = —1732.78 Ib/in or N1o = 4158.82 Ib/in
and the—45° layer will fail when N1, = 1732.78 Ib/in or N1, = —4158.82 Ib/in. It
is interesting to note that these two layers fail at différeagnitudes of in-plane shear
force along the positive shear direction or negative shigactibn.

For the0° layers, according to Eq. (6.49), we have

8.077TN2\? .
=) =
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which can be solved a¥;, = +1857.07 Ib/in.
For the90° layers, according to Eq. (6.49), we have

~8.077Ni2 > _
——=) =

which can be solved a&, = +1857.07 Ib/in. When we subject the laminate to a
positive shear forcé/,,, the —45° layer will fail first at N1o = 1732.78 Ib/in. When
we subject the laminate to a negative shear fdvge, the 45° layer will fail first at
Ny = —1732.78 Ib/in.

6.3.4 Hashin failure criterion

The Tsai-Wu failure criterion represents an improvemeiet dkie Tsai-Hill failure crite-
rion by considering the possibility of different compregsand tensile strengths. However,
both failure criteria share the same disadvantage thatdieyot clearly indicate the fail-
ure modes. Particularly for unidirectional fiber reinfala@mposites, we know that they
could fail due to multiple, drastically different failureeohanisms such as fiber breakage
in tension, fiber buckling in compression, or matrix cragkin tension. It is not clear
that all these physically distinct failure modes can be goeé by a single smooth failure
function given by the Tsai-Wu failure criterion or the Ts#iit failure criterion. Hashin
[64] proposed a failure criterion for unidirectional fibemaposites which can take distinct
failure modes into consideration. It is assumed that thditegtional fiber composite ma-
terial is a transversely isotropic homogeneous materilét fail in four different modes
including tensile and compressive fiber modes, and tensdeeampressive matrix modes.
The strength of such a material can be characterized usetetisile strength) and
compressive strengthX(") along the fiber direction, tensile strengfti)(and compressive
strength {’) along the matrix directionaf; or =3 direction), transverse shear strength
in zo — x3 plane, and axial shear strengthn z; — x5 plane andr; — 23 plane.

Instead of using stress components, Hashin proposed totness snvariants for the
transversely isotropic material with; along the fiber direction and,, x3 in the plane
perpendicular to the fiber. For any arbitrary rotation acbthre fiber direction, we will
have the following four distinct stress invariants fromelam up to the quadratic terms of
stress components.

2 2 2
I = o011, Iy = 022 + 033, I3 = 053 — 022033, Iy = 01y + 013 (6.50)

Thus, a general quadratic failure criterion can be expressterms of these stress invari-
ants as

f=A0 +BI} + Ayly + Bol + Ciol I + Aslz + Ayly = 1 (6.51)

This failure criterion can be easily calibrated using theaststrength in:; — x5 planeR
(023 = R and all other components vanish) and shear strength inz. plane orz; — x3
planeS (g2 = S oroy3 = S and all other components vanish) as

AsR? =1, A48% =1 (6.52)

Thus, we have
As

Ay

(6.53)
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For the tensile fiber moder(; > 0), Hashin assumed that, 012, 013 contribute to
this failure mode and the contributions from other stressmanents can be neglected (i.e.
we can assumg, = I3 = 0), thus the failure function in Eq. (6.51) can be written as

01y + 013
S2

Since all the calibration information we have about thistierfiber failure mode is{; =

X, itis impossible to determine botly andB; . Instead, Hashin assumed the contribution

of the linear term due tol; can be neglected and approximately calibrated the failure
criterion as

f = A10'11 —|— Blofl + = 1 (654)

j_ch oo

X? S2
For compressive fiber mode; < 0), because of the complexity of this failure mechanism
and lack of evidence that axial shear stresses contributeetcompressive fiber failure,
Hashin proposed to approximate this failure mode usingithple maximum normal stress
failure criterion:

-1 (6.55)

g
= | )2|
It is noted that Hashin purposely tried to separate the leefifler mode from the com-
pressive fiber mode, thus he chose not to isend X’ together to determind; and B;
similar to what has been done for the Tsai-Wu failure criteri

For the matrix failure, Hashin argued that omly; does not contribute to this failure
mode. Thus, the failure criterion can be written as

-1 (6.56)

033 — 02033 | 0%y + 01y
R 5
For the tensile matrix failure, Hashin introduced the sappraximation as fiber tensile
failure (i.e., neglecting the contribution from the linéarm) such that

f = AQ(O’QQ + 0'33) + BQ(O’QQ + 0'33)2 +

=1 (6.57)

f= (022 + 033)? n 033 — 022033 n oiy + 0t
- Y2 R2 S2
For the compressive matrix failure, we can first calibrate ¢hterion using the com-
pressive strength” as

-1 (6.58)

f=-AY +BY"?=1 (6.59)
Next, Hashin argued that matrix can fail under bi-axial coesgive pressure so that, =
o33 = —o. Substituting this stress state into Eq. (6.57), we have
02
We can solved, and B; from Egs. (6.59) and (6.60) as
Y2 (0?/R? +1) — 40? 2R%0 — R*Y' — Y’

A By =
g 102V —20Y2 > 7 T2R20Y/(Y = 20)

(6.61)

It is reasonable to expect thats> Y’ because it will be much more difficult for the matrix
material to fail under equal bi-axial pressure. If we onlgjéehe leading terms id; and
Bs in terms ofY”’ /o, we have

Y’ 1 1

A= B= (6.62)
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Thus, the resulting failure criterion for the compressiviix mode is

Y\ ?
(3r)
(6.63)
One complexity is to determine when we consider that theirigtunder compression or
tension. Hashin suggested that when + o335 > 0 the material is in the tensile matrix
mode. Otherwise, it is in the compressive matrix mode.
In summary, for unidirectional fiber reinforced composi@&er obtaining the stresses

in the material coordinates, Hashin suggests the follofaiigre criterion for four possible
distinct failure modes

= Tensile fiber moded;; > 0)

f= —1

2 2 2 2
022 + 033 022 + 033 023 — 022033 01 + 013
Y’ 2R R2 52

f= oty " iy + 03
X2 52
= Compressive fiber mode{; < 0)

—1 (6.64)

f= |§f| =1 (6.65)

= Tensile matrix modedss + o33 > 0)

f=

2 2 2 2
(022 + 033) + 023 — 022033 + 01y T 013
Y2 R? S2

=1 (6.66)

f= =1

= Compressive matrix mode4s + o33 < 0)
2 2 2 2
022 + 033 022 + 033 053 — 022033 +012+C’13
Y’ 2R R2 S2

()
(6.67)

It is noted that the material could fail in both fiber mode aratnix mode, thus both types
of failure modes should be checked at the same time for the saaterial point.

For a plane-stress state, we kneyy = 0. The Hashin failure criteria is simplified to
be

= Tensile fiber moded;; > 0)

(%) () - 0
= Compressive Fiber mode{; < 0)
f= |§f| =1 (6.69)
= Tensile matrix modedzs > 0)
SR gL

= Compressive matrix mode{, < 0)
YI 2 0929 g99 2 g192 2
(2—3) -1 T+ (5m) +(F) =1 (6.71)

F= Y’ o°R S
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EXAMPLE 6.9

Strength analysis of a composite lamina: Suppose that a composite lamina can be
assumed as a homogeneous material. The composite matesiatrengths{=100
ksi, X’ = 30 ksi, Y=9 ksi, Y’ = 20 ksi andS=15 ksi. An off-axis lamina is made of
this material and loaded by a tensilgas shown in Figure 6.10. Predict the maximum
allowablecy as a function of the fiber orientation anglg according to the Tsai-Wu
failure criterion and the Hashin failure criterion.

Solution: First, we need to evaluate the stress components in theialateordi-
nate systemu(;) due too in the problem coordinate system. We have

g11 = 0082 6‘30’0
g92 = sin2 930’0

g1 = —COS 93 sin 930’0

According to the Tsai-Wu failure criterion in Eq. (6.49), Wave

2 2
(% - %) cos? Os0¢ + (% - %) sin? Oz0¢ + %
(sin2 9300)2 (cos B3 sin 9300)2 cos 03 sin 030 2 _1
Yy, XX’ * ( S ) -
This equality has two solutions which can be obtained easilg symbolic manipula-
tor. The lengthy formulas are not given here for the sake dhgespace.
Under this particular loading, we have; andoss always greater than zero. Thus,

we could have possible tensile fiber mode and tensile matoderaccording to the
Hashin failure criterion. For tensile fiber mode, accordm&q. (6.68), we have

cos? 0300 2 n cos 03 sin O30 2 _1
X S B

For tensile matrix mode, according to Eqg. (6.70), we have

sin? O30 2 L cos 03 sin O30¢ 2 _1
Y S N

Both equations can be solved symbolically. It can be fourtdltat wherd; increases
from 0t016.6992°, o solved from the first equation is always smaller than thatesbl
from the second equation, which implies that the laminaifas in tensile fiber mode.
Whend; increases from6.6992° to 90°, o( solved from the first equation is always
larger than that solved from the second equation, whichigaphat the lamina failures
in tensile matrix mode. The changes of maximamwith respect t@; for both failure
criteria are plotted in Figure 6.12. Both failure criterigegict similar trends. These
two predictions have noticeable differences for off-axiglas of a few degrees to
about45°. Itis also noted that Tsai-Wu represents a smooth curveaiddlshin has a
discontinuity a3 = 16.6992° due to change of failure modes.

6.4 Strength ratio

For a structure subject to a lo& we can solve for the 3D stress field, then we can compute
the failure index at each point according to a chosen faituiterion. Failure index is a
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Figure 6.12 Strength of an off-axis lamina predicted by different fedcriteria (Red - Tsai-Wu
criterion; Blue - Hashin criterion).
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pointwise quantity varying within the structure. If any bktfailure indexes is greater or
equal to 1, the structure fails at the corresponding poiiatl the failure indices are smaller
than 1, the structure is safe. Sometimgsés computed to be smaller than zero according
to some failure criteria such as the Tsai-Wu failure criteri It means that according to
this particular failure criterion, material point is saterder the corresponding stress state
than a stress state which could resulfie= 0, which does not make physical sense. Since
a negativef is not physically meaningful, we will replace all negatifealues with zero.
The initial failure load of a structurd?.,., is defined as the load under which the maximum
failure index is equal to 1.P,, is calledthe first point failure loador the initial failure
load of the structure. If the maximum failure index is smallerrttia we can increase the
load until it reaches the valuk., so that the maximum failure index is equal to 1. If the
maximum failure index is greater than 1, we can decrease#ueuntil it reaches the value
P,,- so that the maximum failure index is equal to 1.

If the stress analysis is linear, then instead of continlyoingreasing or decreasing
the load to carry out the stress analysis multiple times, nlg need one analysis. For
an arbitrary loadP, there is a corresponding 3D stress field. We can compute the
failure index for each point based on this stress field. Sspplat the initial failure load
is P, = oP, then the corresponding stress fieldis;;, with o being positive because we
are predicting the failure load in the direction of loRd

If the failure criterion is linear with respect to the strésdd, such as the maximum
stress failure criterion, we will have

f(O‘Uij) = Oéf(Cfij)

According to the failure criterion, we requiref = 1. Thus, we have

Q@ 7 (6.72)
« is also commonly callethe strength ratio We can compute the strength ratio at each
point, which implies how many times of the current load itlvidke to fail that point.
For example, if the strength ratio computed at one point3s i2means that we need to
increase the current load to be 2.5 times larger in the saraetitin to fail the material at
this point. The strength ratio is also sometimes called #ifietg margin. It is emphatically
pointed out that the simple reciprocal relation betweensthength ration and the failure
index in Eg. (6.72) only holds for linear failure criteriaofother failure criteria which
are not linear, it is more intuitive to use the strength ratioch will be illustrated using an
example later.
Denote the smallest among all the points as&,,;,, the initial failure load can be
computed as
P = amin P (6.73)

If we let P equal to 1, them,,;,, is the initial failure load.

If the failure criterion contains only quadratic terms oé tstress components such as
the Mises failure criterion and the Tsai-Hill failure criten. We will have f(ao;;) =
a? f(o;;). According to the failure criterion, we requit€ f = 1. Thus,a = % If fis
smaller or equal to zerey = +o0o which means that the corresponding material point will
not fail no matter how large the load is.

If the failure criterion contains both linear terms and guadid terms of the stress com-
ponents such as the Tsai-Wu failure criterion, we will have

flaoj) =a*a+ab=1 (6.74)
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with
a =F1107; + Fag03y + Fs3055 + 2F12011092 + 2F13011033 + 2F23020033+ (6.75)
F440'§3 + F55U%3 + FGGO'%Q .
and
b= Fio11 + Fy092 + F3033 (6.76)

wherea, b are computed based on the stress state due taftodthen, we can solve as

_ 2
o b+ Vb2 + 4a (6.77)
2a
Only the positive solution makes senseu i positive, we have
_ \/h2
a= w (6.78)
a

If a is negative, a positiver exists only ifb > 0, the smaller value of the two possible
solutions is the same as Eq. (6.78)a indb are both negative, a positivedoes not exist.
If a positive solution does not exist, for example< 0 or b + 4a < 0, it means that it is
impossible to achievg = 1, which further means it is impossible to fail the materiaijo
and thusy = +oo.

If we also want to find the initial failure load along the negatdirection of loadP,
we need to flip the sign of the stress results we have obtainddrdoadP and apply
the failure criterion to compute the strength ratio agairowiver, if the failure function
remains the same for both; and—o;; such as the Mises failure criteria, the maximum
shear stress failure criterion, and the Tsai-Hill failurgecion, the strength ratia will
remain the same. For the Tsai-Wu failure criterion, to cotaghe initial failure load
along the negative direction &f, we need to switch the sign étto beb* = —b. Then the
failure criterion is written as

f(aoy;) = a®a+ab* =1 (6.79)

ifa >0
o —b* +Vb*? +4a
n 2a

If a < 0, a positivex exists only ifb* > 0 (orb < 0), the smaller value of the two possible
solutions is the same as the above equation. 4f 0 andb* < 0 (or b > 0), a positivex
does not exist.

Composite materials usually have residual stresses in #terial before some external
loads are applied. For this situation, the simplicity of garting the initial failure load
using just one stress analysis does not exist for most éaduteria. Suppose a residual
stress fielda?j exists in the material before a lodtlis applied to the structure. Suppose
that the stress field;; is generated due tB, then the total stress field is; + o). If the
initial failure load P,, = oP is applied,ac;; will be generated and the total stress field is
ao;; + cr?-.

It is not straightforward to compute the strength ratio inrape way by using only
one stress analysis. Usually, special consideration nedats given for a specific failure
criterion. If the failure criterion is governed by a singlermula, computing the initial

(6.80)
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failure load using just one stress analysis is still possilflor example, for the Tsai-Wu
failure criterion, we have

f(aioj + aoyj) = f(az-oj) +ala+ac=1 (6.81)
with
¢ =b+2 [Fi10{1011 + F2209,005 + F33095033+
Fi2(09,099 4+ 095011) + Fi3(0%,033 + 093011) + Faz (099033 + 093022)  (6.82)
+F44033023 + F550(1J3013 + FGGU?QUlg]

anda, b given in Eqg. (6.75) and Eq. (6.76). If we assume that the rizteas not failed
under the initial stress (i.ef,(c;;)° < 1), the strength ratio along the direction Bfcan
be computed as

—c+ 4/ +4all — f(o?;
T Ve zaa[ £(0%)] 659

To compute the initial failure load along the negative ditof P, we need to switch the
sign of¢, the strength ratio can be computed as

c+ \/02 +4a[l — f(of;)]
a= (6.84)
2a

The strength ratio and the initial failure load in terms oéBts can be calculated in the
same way if the failure criterion can be conveniently expeelsn terms of strains. If more
than one failure functions are used, such as the Hashimioriteone needs to check both
fiber and matrix failure at a point, then the failure funcsauf all the applicable failure
modes should be evaluated and the largest failure indexr{aliest strength ratio) should
be used as the failure index (or strength ratio) for thatfpoin

EXAMPLE 6.10

A composite material has strength constantsXas= 1168 MPa, X’ = 740 MPa,
Y=Z=Y =2 =99 MPa,R = 450 MPa,T = S = 68.6 MPa. The stress
state of a point in a composite laminate is computed,as= 42.88 MPa, o2 = 5.33
MPa,o33 = 14.68 MPa, 093 = 1.6 MPa,o;3 = 0.5 MPa, 012 = 0 MPa. Evaluate the
failure indexf and strength ratie according to the Tsai-Wu failure criterion and the
Hashin failure criterion.

Solution: First, let us use the Tsai-Wu failure criterion. Based orgilrien strength
constants of the material, we can compute the parametededder the Tsai-Wu
failure criterion according to Eqg. (6.39), (6.40), (6.44nd (6.47) as:

Fy = —4.95 x 10~ *MPa!, Fy = F3 = OMPa !

Fi; =1.157 x 107 5MPa 2, Fyy = F33 = 1.0203 x 10~ MPa 2

Fyy = —4.94 x 1075 MPa 2, Fy5 = Fygg = 2.125 " *MPa 2

2F,3 = —2.029 x 10~*MPa 2, 2F)5 = 2Fj5 = —1.157 x 10~ MPa 2

Then, we can compute= 0.0102107 andb = —0.0212336. Thus, the failure index

f=a+b=-0.011023



304 INTRODUCTION TO FAILURE OF COMPOSITE MATERIALS

Since the failure index is negative, we can effectively aeplit with f = 0 as if this
stress state has no effect on the damage of the material dii@iever, it does not
imply that the strength ratio is infinite, because we can aaephe strength ratio
according to Eq. (6.78) as

a = 10.99

Indeed, if the load is increased = 10.99 times, we will have the stress state
becomeau = 471.38 MPa, 095 = 58.58 MPa, o33 = 161.34 MPa, 093 = 17.58
MPa,o13 = 5.50 MPa,o1, = 0 MPa. Under this stress state, we have 1.233 and
b= —0.233 andf = 1.0, which implies that the material fails.

Now, let us use the Hashin failure criterion. For the giveesg state, because
o011 > 0 andogs + 033 > 0, the material could fail either in the tensile fiber mode
or the tensile matrix mode. According to Egs. (6.64), we hAve 0.0014 for the
fiber tensile mode. The corresponding strength ratiois 1/f = 26.72. According
to Eg. (6.66), we havg = 0.0405 for the matrix tensile mode. The corresponding
strength ratio isx = 1./f = 4.967. The larger failure indexf{ = 0.0405) among
these two failure indexes will be the failure index for thiaterial and the correspond-
ing mode is tensile matrix mode. The smaller strength ratie=(4.967) among the
two strength ratios will be the corresponding strengtlorédi this material and the
corresponding failure mode remains the same as the tenath&mode.

Clearly, this example demonstrates that there are no die¢ations between the
failure index and the strength ratio and it is more meanihgfuise the strength ratio
as the indicator for the safety margin of the material.

It is also shown that different failure criteria could pretdvery different failure
indexes or strength ratios for the same material. Expertaieiata should be used to
decide which failure criterion provides a better predictior a certain material.

6.5 Failure envelope

Failure envelope graphically depicts the boundary of thessistrain states so that the
material fails outside the boundary and the material isisside the boundary. In general,
it could be a six-dimensional surface in terms of the sixsstreomponents or six strain
components, or a mix of stress and strain components. Hawigus very difficult to
graphically represent and visualize such surfaces. Athoue can plot such envelopes
in the three-dimensional space of principal stresses édrdpic materials, we do not plot
such envelopes for general anisotropic or orthotropic riesebecause the failure criteria
are not expressed in terms of the principal stresses. Thusally, the failure envelopes of
composite materials are generated for bi-axial or triddgi@ding conditions. If the stress
analysis and failure analysis can be performed analyyictde failure envelope can be
evaluated relatively easily, as shown in previous examplesvever, if the stress analysis
and failure analysis are performed using numerical methibdd&comes more involved.
Usually, we hold one stress;; to be constant, then change the another stressggay
until the material fails ando11, 022) will become a data point on the failure envelope.
Usually, for one stress; 1, there are more than og, values which will fail the material.
Next, increaser;; and find another set afy; to locate the next data point on the failure
envelope. For a linear stress analysis, the searctufocan be simplified as in the case of
the material with residual stresses which was discusse¢kabo

The same concept can also be applied to obtain the failurel@re of a composite
laminate. Generally speaking, the failure envelope of apasite laminate can be a six-



