Computation of effective viscoelastic properties and timedependent constituent properties with Abaqus SwiftComp GUI

Viscoelastic Homogenization with Time-dependent Constituent Properties

In this example, we want to compute the effective properties of a composite material made of isotropic viscoelastic matrix and transversely isotropic elastic fiber. The fiber properties are defined by means of engineering constants as specified in the table below.

<i>E</i> _{1<i>f</i>} (MPa)	<i>E</i> _{2<i>f</i>} (МРа)	<i>G</i> _{12<i>f</i>} (MPa)	v_{12f}	v_{23f}
233,000.0	15,000.0	8,963.0	0.200	0.330

Fiber properties

defined as transversely isotropic elastic

The matrix properties are given as a time-dependent properties, which means that for each time a value of the Young's modulus is given. In addition, we will consider that the matrix has a constant Poisson's ratio equal to 0.37. We will create a text file to input the time-dependent material properties as follows.

MaterialData - Notepad

Edit	Format	View	Help	
		0.37	7	0
.020	589	0.37	7	0.00199
.055	703	0.37	7	0.0025
.769	288	0.37	7	0.003
.915	689	0.37	7	0.00323
.957	043	0.37	7	0.00405
.963	766	0.37	7	0.00486
.835	591	0.37	7	0.00649
.065	459	0.37	7	0.00811
.258	298	0.37	7	0.00974
.704	982	0.37	7	0.0122
.665	689	0.37	7	0.0146
.796	174	0.37	7	0.0179
.379	814	0.37	7	0.0219
.781	663	0.37	7	0.0268
.109	482	0.37	7	0.0325
.140	102	0.37	7	0.039
	Edit .020 .055 .769 .915 .957 .963 .835 .065 .258 .704 .665 .796 .379 .781 .109 .140	Edit Format .020589 .055703 .769288 .915689 .957043 .963766 .835591 .065459 .258298 .704982 .665689 .796174 .379814 .379814 .781663 .109482 .140102	Edit Format View 0.37 0.37 .020589 0.37 .055703 0.37 .055703 0.37 .769288 0.37 .915689 0.37 .957043 0.37 .963766 0.37 .835591 0.37 .065459 0.37 .704982 0.37 .796174 0.37 .379814 0.37 .109482 0.37 .140102 0.37	EditFormatViewHelp0.37.0205890.37.0557030.37.0557030.37.7692880.37.9156890.37.9570430.37.9637660.37.8355910.37.0654590.37.2582980.37.7049820.37.6656890.37.7961740.37.3798140.37.1094820.37.1401020.37

Time-dependent matrix properties

Please note that for different viscoelastic anisotropies, the material properties should be defined as follows in different columns.

- Transversely isotropic. --- Young's Modulus, E (t) --- Poisson's ratio, nu (t) --- Time, t

- Orthotropic defined by means of engineering constants. —- E_1 (t) —- E_2 (t) —- E_3 (t) —- nu ₁₂ (t) —- nu_{13} (t) —- nu_{23} (t) —- G_{12} (t) —- G_{13} (t) —- G_{23} (t) —- Time, t

- Orthotropic defined by means of stiffness matrix. — D_{1111} (t) — D_{1122} (t) — D_{2222} (t) — D_{1133} (t) — D_{2233} (t) — D_{3333} (t) — D_{1212} (t) — D_{1313} (t) — D_{2323} (t) — Time, t

- Anisotropic. --- $D_{1111}(t) - D_{1122}(t) - D_{2222}(t) - D_{1133}(t) - D_{2233}(t) - D_{3333}(t) - D_{1112}(t) - D_{2212}(t) - D_{3312}(t) - D_{1212}(t) - D_{1113}(t) - D_{2213}(t) - D_{3313}(t) - D_{1213}(t) - D_{1213}(t) - D_{1313}(t) - D_{1223}(t) - D_{3323}(t) - D_{3323}(t) - D_{1323}(t) - D_{1323}(t) - D_{2323}(t) - Time, t$

We will use a square pack 2D SG with fiber volume fraction equal to $v_f = 0.64$.

Software Used

In his tutorial we will use Abaqus CAE with the Abaqus <u>SwiftComp</u> GUI plug-in. Abaqus CAE will be used to GUI to define the time-dependent material properties and to run the viscoelastic homogenization. <u>SwiftComp</u> will run in the background.

Solution Procedure

The steps required to compute the effective viscoelastic properties using Abaqus <u>SwiftComp</u> GUI are as follows.

Step 1. We define the material properties in global coordinate system. We click on *Materials* in Abaqus CAE and define the *Fiber* properties by means of the engineering constants and click "Ok".

Abaqus-SwiftComp GUI Version 6.16-0 [Viewport: 1]		- 0 ×
E File Model View Viewport Material Section Profile Composite Assign Special Feature Ioo	ls ↓ Edit Material ×	_ # ×
	Name [Riber Description: // /////////////////////////////////	
Model Results Material Library Module: 🗘 Pr	cr Elastic	
Set Model Database		
Important Important	General Mechanical Thermal Electrical/Magnetic Other Elastic Type: Ingineering Constants Image Obsetemperature-dependent date Number of field variables: Image: Image	<u>ð</u> s simulir
»»	UK Cancel	

Definition of the fiber properties

Step 2. Within the *Materials* of Abaqus CAE, we create a dummy material called "Matrix". Please note that we will not define the Prony coefficients of the resin using the Abaqus <u>SwiftComp</u> GUI in the next step.

Creation of the dummy material for the matrix

Step 3. In the Abaqus <u>SwiftComp</u> GUI menu, we click on Input Time-Dependent Properties. We select "Time-dependent" and "Viscoelastic" in the Method & Analysis section. We pick "Matrix" as the Material to be modified in the drop down menu. Then, we look for the text file used to input the material properties. This text file can be located in any folder of the computer. Finally, we click the two "Ok"s as shown in the picture.

	: 🔯 🔽 🚛 📘 🚺 🗾	💌 🖹 🔛 🏟 🕎 👬 🖉 📑 <	
Model Results Material Library	Module:	Property Input Time-dependent Pro	perties It: ÷
Model Results Material Library Model Database Models (1) Model-1 Parts Ø Models (2) Fiber Ø Calibrations Sections Ø Calibrations Sections Ø Assembly Ø Steps (1) B Assembly B Assembly Ø Assembly Baterial Captice Mesh Constraints Interactions Interactions Interaction Properties Interactions M Contact Controls M Contact Stabilizations M Contact Stabilizations M Contact Stabilizations		Property Input Time-dependent Pro Time-dependent Material Data Method & Analysis Prony Coefficients Time-dependent Material Total Material Model Material Model Material Material from file Material data file	Image: Select a File
Contact Stabilizations Constraints Gonnector Sections Fields Amplitudes Loads BCs BCs BCs Sectches Sketches Sketches Sketches			Abaqus CAE - Original.lnk Sg3DFiber.py Abaqus CAE - Temperature.lnk Abaqus CAE. Temperature.lnk Abaqus CAE.nk Abaqus Scalink Abaqus Scalink Abaqus sistall verify.docx ConductivitlyHomogenizationpbc.sc C Eile Name: MaterialData.bt File Fjiter: All files (*)
		ОК	Apply Cancel

Definition of the matrix Prony coefficients

Step 4. From the default the Abaqus <u>SwiftComp</u> GUI SGs, we pick the 2D Structure Genome with Square pack. We input the fiber volume fraction, define the approximate global mesh size, and click "Ok". A square pack microstructure will be automatically generated.

💠 2D Structure Genome - Ur	nit Cell	×
Select a profile		
Square		
Geometry	1	
Fiber	Interphase	
Volume fraction (vf_f)	Volume fraction (vf_i)	
Radius (r)	 Thickness (t) 	
0.64	0	
Note: 0 < vf_f+vf_i <= 0.78		
Material		
Model: Model-1 🗸		
Fiber: Fiber 🗸		
Matrix: Matrix 🗸		
Interphase: Fiber 🗸		
Mesh		
Approximate global mesh si	ze: 0.05	
Element type:	Linear 🗸	
ОК	Apply	Cancel

Definition of the 2D SG square pack microstructure

2D SG square pack microstructure

Step 5. Now, we will compute the effective viscoelastic properties. To do so, we click on *Homogenization* and select *Viscoelastic* in Analysis Type. In the Viscoelastic/Thermoviscoelastic Analysis section, we define the range of the time (i.e. *Initial time" and* Final time") in which we want to output the effective properties as well as the

frequency (i.e. Time increment" defined in decades).

COMPUTATION OF EFFECTIVE VISCOELASTIC PROPERTIES AND TIME-DEPENDENT CONSTITUENT PR

-	3 ■ ■ 3 ● ■ ■ ■ ■ New SwiftComp file name: Visco1emp						
Module: Property V Model Homoor	Part: \$ sqrF CAE Classifie						
	Macroscopic model						
📲 🛄 📰 📰 📰	Dimension Dimensionally reducible structures						
	O 1D (Beam) Specific model: Classical						
	3D (Selid)						
+ /	🗋 Omega:	🗌 Omega:					
	Note: Provide omega if the combination of structural model	lote: Provide omega if the combination of structural model					
	1) 3D solid model with regular structure genome						
	(rectangular for 2D and cuboid for 3D); 2) 2D shell model with 1D structure genome;						
	 D beam model with 2D structure genome. Please refer to the SwiftComp manual for more details. 						
(XYZ) 📩	Options						
- <u></u>	Analysis type: Viscoelastic						
	Element type: Regular						
	Elemental orientation: Global						
	Temperature distribution: Uniform						
~ *	Aperiodic						
	□y1 □y2 □y3	□y1 □y2 □y3					
	Viscoelastic/Thermoviscoelastic Analysis						
	Initial time: 0						
rt: sqrP2quater	Final time: 5						
	Time increment (decades): 0.5						
	Note: Provide a time increment in decades for the desired effective properties. Only valid for viscoelastic and thermoviscoelastic cases.						
rt: sorP2quater	Only generate input file. Do not run SwiftComp.	Only generate input file. Do not run SwiftComp.					
	OK	cel					

Definition of the viscoelastic homogenization step

Step 6. We click on *Ok* to run the homogenization step. <u>SwiftComp</u> on the background will run the homogenization.

running on the background

Step 7.The results can be found in the *.sc.k* file as shown next. Note that the effective properties will be outputted for each specified time.

📔 C:\U	sers\ori	quega\Desktop\Abaqus-SwiftCor	mp_GUI_v2.0\ViscoTemppbc.sc.k -	Notepad++				_		×
File Edi	it Sea	rch View Encoding Languad	ge Settings Tools Macro Ri	un Plugins Window ?						х
🕞 📥 I		🗟 🐚 🎒 🔏 👘 👘 🗩	🖻 🛍 🌆 🔍 🔍 🗔 🛱	3 🖽 1 🎩 🗷 💹 🖉	💌 💌 🖿 🕨 📑 其] == =; = =: 🎊				
📄 Visco T	emppbc	.sc.k 🗵								
1	#			#						^
2	Eff	ective Viscoelastic	Properties at Time:	t = 1.0000000	E+000					
3										
4	4 The Effective Stiffness Matrix									
5										
6		1.5022356E+005	1.9005934E+003	1.9005317E+003	1.9539925E-014	0.0000000E+000	0.0000000E+000			
7		1.9005934E+003	5.6630274E+003	1.9065375E+003	-1.4424018E-012	0.000000E+000	0.0000000E+000			
8		1.9005317E+003	1.9065375E+003	5.6626731E+003	1.0365042E-012	0.000000E+000	0.0000000E+000			
9		1.9539925E-014	-1.4424018E-012	1.0365042E-012	1.0788270E+003	0.0000000E+000	0.0000000E+000			
10		0.0000000E+000	0.000000E+000	0.000000E+000	0.000000E+000	1.6152414E+003	-1.8509638E-012			
11		0.0000000E+000	0.0000000E+000	0.0000000E+000	0.0000000E+000	-1.8509638E-012	1.6152694E+003			
12	-1									
14	The	Effective Compliand	ce Matrix							
15		6 6992079E-006	-1 69207408-006	-1 60212258-006	-7 54155510-022	-0.0000008+000	-0 0000008+000			
16		-1 6820740E-006	-1.8820740E-008	-1.6621223E-006	-7.5415551E-022	-0.0000000E+000	-0.0000000E+000			
17		-1.60210258-006	-6 6621266E-005	1 99592292-004	-2 0001957m-019	-0.0000000E+000	-0.0000000E+000			
1.9		-7 5415551F-022	3 3088940F-019	-2 8081957F-019	9 26932718-004	-0.0000000E+000	-0.00000002+000			
19		0.00000008+000	0.0000000000000000000000000000000000000	0.00000008+000	0.0000002+000	6 1910249E-004	7 0943976E-019			
20		0.000000E+000	0.000000E+000	0.0000000E+000	0.000000E+000	7.0943976E-019	6.1909179E-004			
21		010000002.000	0.0000002.000	0.0000002.000	0.0000002.000	,100100,02 010	0.19091/92 001			
22	The	Engineering Constar	nts (Approximated as	Orthotropic)						
23										
24	E1	= 1.4926915	E+005							
25	E2	= 5.0104994	2+003							
26	E3	= 5.01018598	2+003							
27	G1	2 = 1.6152694	2+003							
28	G1	3 = 1.61524148	E+003							
29	G2	3 = 1.0788270	2+003							
30	nu	12= 2.5108175	2-001							
31	nu	13= 2.5108900F	2-001							
32	nu	23= 3.33856428	E-001							
33										
34										
35	Eff	ective Density =	0.0000000E+000							
36	#			#						
37	Eff	ective Viscoelastic	Properties at Time:	t = 3.1622777	E+000					
38										~
<										>
Normal te	ext file			length	: 52,745 lines : 386 l	Ln:28 Col:80 Sel:0 0	Windows (CR LF) UT	F-8	IN	\$

Results corresponding to the effective viscoelastic properties

References

- Liu, X.; Tang, T.; Yu, W., Pipes, R. B.: "Multiscale modeling of viscoelastic behavior of textile composites," International Journal of Engineering Science, Vol 130, September 2018, pp. 175-186, DOI: 10.1016/j.ijengsci.2018.06.003.
- Rique, O.; Liu, X.; Yu, W., Pipes, R. B.: "Constitutive modeling for time- and temperature-dependent behavior of composites," Composites Part B: Engineering, Vol 184, March 2020, DOI: 10.1016/j.compositesb.2019.107726.