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comparison with ABAQUS results. Finally, a numerical example was employed to demonstrate the
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1. Introduction

The smart composite consisting of piezoelectric and piezo-
magnetic constituents displays a magneto-electric coupling effect
that is absent in constituents [1-9]. The magneto-electric coupling
effect created by the interaction of piezoelectric phases and piez-
omagnetic phases has recently been extensively investigated due
to their broad engineering applications [10-12]. Since the piezo-
electric and piezomagnetic ceramics are brittle and susceptible to
fracture, adding a polymer or metallic alloy matrix into the two-
phase electromagnetoelastic composite will increase the ductility
and formability of the composites. To date, several investigations
have been conducted for the response of smart composites cont-
aining metallic phases. For example, Bednarcyk [13] developed a
micro-macro theory to predict the fully coupled electro-magneto-
thermo-elasto-plastic behavior of arbitrary composite laminates
using Generalized Method of Cell (GMC). Due to the introduction
of linear viscoelastic polymer matrix, the composites exhibit time
dependent behavior [14]. The reports that are involved in the
response of smart composites containing both metallic phases and
viscoelastic phases is still limited. Therefore, there is a need to
develop an efficient micromechanical tool for the analysis and
design of such composites.
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The goal of this paper is to develop a general purpose micro-
mechanics model for predicting the time-dependent, non-linear,
and multiphysics response of smart composites. In light of the
time-dependent characteristics and non-linearity of constitutive
relations, an incremental procedure associated with instantaneous
tangential electromechanical matrix was established based on the
micromechanics framework VAMUCH [15]. In order to demon-
strate the capability, a smart composites consisting of metallic
phase, piezoelectric material, piezomagnetic material, and linear
viscoelastic matrix was analyzed using the proposed model.

2. Incremental constitutive equations of materials

2.1. Constitutive equations for linear thermo-viscoelastic polymer
Considering the linear thermo-viscoelastic polymer having no

history of stress and deformation before time t=0, then based on

the Boltzmann superposition principle, the constitutive equations

for the linear thermo-viscoelastic polymer can be expressed in the
time domain in the following way:

t
oy(t) = /0 (Bt — 0 (2) + Byt — 00(0)] dr (1a)

t . .
Di(t) = /0 [kij(t —)Ej(2)+py(t— T)e(f)] dr (1b)
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,[ . .
Bi(t) = /0 [yt~ 2)H@) + mict— () de 10

where Bij(t), k;j(t), and p(t) are the stress relaxation stiffness,
dielectric tensor, and magnetic permeability tensor, respectively;
& (7) is the strain rate; and Ej(r) and Hj(r) are the electric field rate
and magnetic field rate, respectively; d(z) is the temperature
change rate; o;i(t), Di(t), and Bj(t) are the instantaneous stress
tensor, electrical displacement vector, and magnetic induction
vector, respectively; f;(t), pi(t), and m;(t) are the instantaneous
thermal stress tensor, pyroelectric vector, and pyromagnetic vec-
tor, respectively. Note that f(t) = — Bjj()ayy With ay being ther-
mal expansion coefficients. In this study, the aj is assumed to be
constant.

According to the time-temperature superposition principle [16],
the real time t has to be replaced with reduced time ¢ in order to
account for the variation of material's properties of polymer with
temperature. Hence, Eq. (1a)-(1c¢) can be rewritten as

ot
oy(t) = /0 (B —&)ew(€) + By —EH0NEN] de (2a)
[ . .
D= [ [ke— £ +pie— 0] az (2b)
t . .
B(t) = /0 [y &)+ mice— i) de 20)
The reduced time ¢ = &(t) is defined by
Lt
_ il 3
aw- [T 3)

where ary is a time-scale shift factor, and & = &(z).

As pointed out by Pyatigorets et al. [17], since the correspond-
ing value of real time t can be found for each value of reduced time
£ and vice versa, the stress and strain in the reduced time domain
can be replaced with their values found for the corresponding real
time, such that

0ij(&) = 6ij(§(0)) = ajj(1),  €;i(&) = €4i(5(D) = &4(F) 4)
Hence, the Eq. (2a)-(2c) can be simplified as

t

(0= [ [Bule(t)~ €0eu(e)+ Ay — E)0e)ds (53)
t . .

DiO= [ [kytett)~ €@ o)+ pie(t) - £0)io) | s (5b)
t - .

B = [ [ay(e(O— Do)+ (&)~ 0o s (50

In light of the non-linear, time dependent, and multiphysics
response of the composites, our analysis need to be incremental.
The incremental formulations of Eq. (5a)-(5c¢) can be expressed as

Acii(t) = ojj(t+ At) — j(0)
t+ At
- /t (Bt + A — )i () + F(E(E+ AD) — E2)0(0)] dr
t
+ /0 (Bt + A — )i () + F(E(E+ AD) — E()0(0)] dr
t
- /0 [ByjalE(0) — &) () + (&0 — &) de (6a)

AD;(t) = Di(t+ At) —D;(t)

t+At . .
= [ ket a0 oo+ piet+ A0~ (oo de

't . .
+ [ e+ 80—+ piet+ A0 — (i) de

rt . .
- /0 [Ki(E(0) = E@NE )+ Pi(E(0) — E@)0(D) de (6b)

AB;(t) = Bj(t+ At)—Bj(t)
£ A ) )
= [ e a0 =g+ mia+ 80— o)) ds

t . .
— [ [+ 80— o0y + i +-a0 00 s

t . .
= [ [t~ opry o)+ mice(0)— o) ds (60)

Although the strain rate, electrical field rate, and magnetic field
rate are not necessarily constant in the whole time domain, it is
reasonable to assume that the strain rate, electrical field rate, and
magnetic field rate are kept constant during each time increment
At. The temperature change rate can be kept uniform in the whole
composites. Then, the Eq. (6a)-(6¢) can be rephrased as

Acij(t) = Ly (D) Aegg () + 7D AO(L) + wij (L) (7a)
with
1 "+ AL
L =5z [ Bualett+ 80— e
1 ( ~t+ AL
0= [ e a0 -conde)
t
V)= [ [Bya(a(t+ A0~ 00~ Byae0) ~ (o) (o) s
t
+ [ Iyteces a0 a0 - pyet) - o) ocerds
— ADY(0) = —KiOAE(t) —PAOA0— mi(t) (7b)
with
1 t+At
KW =g [ ket 80— s
1 t+At
Po=gi( [ pete+an- o)
t .
)= [ [kyle(t+ A0~ 0 - ky(&() £ Exo) de

t
+ /O [Pi(E(E+ At — &) — py(E(D) — &) do)de
— ABi(t) = — Ny(®/AH,(t) ~ Mi(t)A0— ¥,(t) (70)
with

1 t+At
N =7 [ et A0 —&eds
1 t+ At
M= ([ miee+an- o)
t .
#O= [ luylelt A0~ 6) iy €O~ ] o) e

t
+ /O [MA(E(E+ AL — &) — my(E(t) — K)oz

2.2. Constitutive equations for piezoelectric-piezomagnetic materials

The elastic and the dielectric responses are coupled in piezo-
electric materials where the mechanical variables of stress, and
strain are related to each other as well as to the electric variables
of electric field and electric displacement. The coupling between
mechanical and electric fields is described by piezoelectric coeffi-
cients. The linear rate independent coupled constitutive equations
of piezoelectric materials are given by

oij = Ciniera — eijkEx — QyeHi + B0 (8a)

D; = ejex + kikE +aygHy +p;0 (8b)
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Bi = eine + A Ex + pigHy +m;0 (80

where Cgk,, ek, Jijk» and p;; are the elastic, piezoelectric, piezo-
magnetic and thermal stress tensors, respectively (note that
pij = —ij,dak, with ay; as the thermal expansion strain tensor);
ki, ai, and py, are the dielectric, magnetoelectric, and magnetic
permeability tensors, respectively; E; and H; are the electrical field
and magnetic field vectors, respectively.

The incremental form of Eq. (8a)-(8c) is expressed as

AU,’j = CgklAgkl — eijkAEk — qijkAHk +ﬁ,~jA9 (93.)
—AD; = —ejyAey — kit AE, — aj AHy — p;AO (9b)
—AB; = —ejyAey — A AE; — pi AH — m; A0 (90

2.3. Constitutive equations for metal

The incremental stress-strain relation of metals can be exp-
ressed as

Acjj = CUk,Aek,+ﬁijA0 (10a)
—AD; = _kikAEk_piA0 (10b)
— AB; =/"ikAHk —m;AQ (10¢)

where Cyy; are the components of the time independent fourth-
order instantaneous tangent stiffness tensor which is the elastic
stiffness tensor Cjy, when the stress state of the material point is
below yielding and the elastoplastic tangent stiffness tensor Cgﬁl
when the stress state of the material point beyond yielding. Acc-
ording to the classical plasticity theory, the CE‘;’Q; is given by

o _ (CE Clinn (9F /06mn)(Of /9pg) Crgi )
ijkl = ijkl — e
(af/ao'rs)crsm(af/ao'tu) - (af/ap)\/(2/3)(af/30'dw)(0f/30'dw)
an

where f and p in Eq. (8a)-(8c) are yielding function and effective
plastic strain, respectively.

3. Micromechanics formulations

Consider the smart composites with periodic microstructure as
shown in Fig. 1. Two coordinate systems including x = (x1, X2, X3)
and y= (¥;. ¥, y3) are adopted to facilitate the micromechanics
formulations. We use x; as the global coordinates to describe the

X3
X2
X1

macroscopic structure and y; parallel to x; as the local coordinates
to describe the UC (here and throughout the paper, Latin indices
assume 1, 2, and 3 and repeated indices are summed over their
range except where explicitly indicated). We choose the origin of
the local coordinate system y; to be the geometric center of UC.

3.1. Genera incremental formulations of the smart composite and its
constituents

The incremental formulations of polymer, piezoelectric-
piezomagnetic materials, and metal described by Eqs. (7a)-(7c),
(9a)-(9c), and (10a)-(10c) can be extended to the following
general incremental formulations:

Agij(t) = Mt () Ay () — €4k (D AE(E) — Gy (D AH(8) + By (D) AO(E) + i (£)
(12a)

—AD;(t) = —ej(t) Aey(t) — ki (D AE, — ay(H) AHy (t) — pi(D) AO(t) — ()
(12b)

—AB;(t) = —ej(t)Aey(t) — i (O AEL — pyg () AH (£) — m;(H) AG(E) — ¥i(¢)
(12¢)

where

Lija(t) for polymer materials
ik for piezoelectric materials
Mij(t) = Cia for piezomagnetic materials

Ciyq o1 Cih

ikl for metal

0 for polymer materials
ej for piezoelectric materials

ijk() = . . .
eik(0) 0 for piezomagnetic materials
0  for metal
0 for polymer materials
0 for piezoelectric materials
Qiji(t) =

gy for piezomagnetic materials
0 for metal

Identify UC
-

Y1

Fig. 1. A sketch of periodic heterogeneous materials (only two-dimensional (2D) UC is drawn for clarity).
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K (t) for polymer materials

Kik for piezoelectric materials
Ki(£) = Kik for piezomagnetic materials

Kik for metal

Nj.(t) for polymer materials

Uik for piezoelectric materials
i) = Uik for piezomagnetic materials

Hik for metal

7;(t)  for polymer materials

Bij for piezoelectric materials
Pty = Bij for piezomagnetic materials

Bij for metal

wii(t) for polymer materials

0 for piezoelectric materials
i) = { 0 for piezomagnetic materials

0 for metal

w;(t) for polymer materials

0 for piezoelectric materials
@il) = { 0 for piezomagnetic materials

0 for metal

¥i(t) for polymer materials
i) = for piezoelectric materials

0 for piezomagnetic materials

0 for metal

Note that a;(t), p;(t), and m;(t) are absent in individual material
constituents but existing in composites.
Let us define the vectors AX and AY as follows:

AX =[Ac11(t) Acia(t) Acx(t) Aci3(t) Acxs(t) Acsz(t) —AD (1)

—ADy(t) —ADs(t) —ABy(t) —ABy(t) —ABs(t)] (13)

AY =[Aeq1(t) Aera(t) Aexn(t) Aer3(t) Aexs(t) Aess(t) AE((D)
AE;(t) AEs(t) AH1(t) AHy(t) AH3(0)] (14)

The compact matrix form of Eq. (12a)-(12c) is given by
AX = RAY +7A6(t) + K (15)

where Ad(t) is the instantaneous increment of temperature cha-
nge. R is a 12 x 12 instantaneous material matrix and expressed as

M —e —q
R=|-¢" -k -a (16)
-q" —d' —u

where M is a 6 x 6 submatrix for Mj(t) coefficients; e is a 6 x 3
submatrix for e (t) coefficients; g is a 6 x 3 submatrix for gy (t)
coefficients; k is a 3 x 3 submatrix for k;,(t) coefficients; aisa 3 x 3
submatrix for ay(t) coefficients; and u is a 3 x 3 submatrix for
wii(t) coefficients. The superscript “T” means transpose matrix.

In Eq. (15), n is a 12 x 1 matrix and expressed as

p

n=< —D (17)
-m

where g is a 6 x 1 submatrix for py(t) coefficients; m is a 3 x 1

submatrix for m;(t) coefficients; and p is a 3 x 1 submatrix for p;(t)
coefficients.

In Eq. (15), K is a 12 x 1 matrix and expressed as

)
K=_ @ (18)
b d

where o is a 6 x 1 submatrix for w;(t) coefficients; w is a 3 x 1
submatrix for w;(t) coefficients; and ¥ is a 3 x 1 submatrix for
¥;(t) coefficients.

The effective instantaneous thermo-electro-magneto-viscoe-
lastic-plastic coefficients of smart composite materials can be defi-
ned in the following two ways:

AX = R*AY +n*A0(t) 4+ K* (19)
171 1 - o1 1 A01)? 1
5./!2 ZAYTRAY -+ AY 00+ AY UK +5GA00) + 56, 1+ 5hy | de2
2
AV R AT 4+ AV a0 + AT K 4+ L6 a0 + 1 A00” T
2 2 2V Ty 2
(20)

where G is the energy change per unit temperature; c, is the
specific heat per unit volume at constant volume; Ty is the refe-
rence temperature at which the constituent material is stress free;
hy is the energy change similar to c,. In Egs. (19)-(20), “over-bar”
indicates variables which are used in the macroscopic analysis of
homogenized materials, and superscripts “s#” denote the effective
properties whose calculations are determined by the microme-
chanics model one employs. 2 is the volume of unit cell.

3.2. VAMUCH model

The total change of potential energy of the composites can be
formulated as

2
= / <1AYTRAY+AYTnAH(t)+AYT}I<+1GA9(t)+1CVA9(t) +1hv>d92
% 2 2 27 Ty 2
(21)
with
ey L0AULXY) OAULXY)|
Aeii(t:%:y) = v, + %, = Aug;) (22)
Clf. -
ME(txy) = 222D 23)
;i
MmMet. .
S T 24)
i

where Au;, Ag®, and Ag™ are the increments of displacement
vector, electrical potential, and magnetic potential, respectively.
Since Au;, Ag®, and Ag™ are continuous functions at the interfaces
between adjacent unit cells, we have

Aui(t;X1,X2,X3; d1/2,5,y3) = Aui(t: X1 +d1, X2, X35 —dy1/2,y.Y3)

Aui(t;X1,X2,X35 ¥1.d2/2,y3) = Aui(t: X1, X2+ do, 135 Y1, —d2/2,y3)
AU (t:X1,X2,X3; Y1, ¥2.d3/2) = Au; (6 X1, X2, X3 +d35 ¥1,Y5, —d3/2)
(25)

AGE (X1, X2,X3; d1/2,Y,Y3) = AG® (t:X1 +d1. X2, X3; —d1/2,Y5,Y3)
AQ (t:X1,X2,X35 ¥1,02/2,Y3) = AQ° (t: X1, X2 +do, N3: Yy, —d2/2,Y3)
AG® (X1, X2,X35 Y1,Y2,03/2) = AD® (£ X1, X2, X3 +d3; Y1,Y2, —d3/2)

6

(26)

AQ™ (t:X1,X2.X3; d1/2.Y5.Y3) = A@™ (t: X1 +d1,X2,X3: —d1/2,Y,.Y3)
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AQ™ (t:X1,X2,X3; ¥1,02/2,y3) = A@™ (t;X1, X2+ da, 1135 Y1, —d2/2,Y3)

A@™ (X1, X2,X35 Y1,Y2,d3/2) = A@™ (X1, X0, X3 +d3; ¥1,Y,, —d3/2)
(27)
In Eq. (28) and throughout this paper, the angle bracket den-

otes average over the domain of the UC, that is
1
=— [ fdQ 28
h=g/f (28)

with @ denoting the unit cell domain.

Because Au;, Ag®, and Ag™ are continuous function defined in
the UC, we can denote the average of Au;, Ag®, and Ag™ over the
UC as Av;, Ag®, and Ag¢™, respectively, such that

Avi=(Au) Ag°=(AQ°) A" =(Ag™) (36)

Taking advantage of the method of change of variables for Au;,
Ag®, and Ag™, we can obtain

dAV,
A6 %, Y) = AVi(LX) +Yj— ~+2i(5 X Y) (37a)
)
AQE(t; X Y) = ApS(t; x)+yj—+§"(t x;y) (37b)
m m A" m
AZ"(E:x:y) = A (EX) Y — (X Y) (370)
)

where y;, ¢¢, and ¢™ are the fluctuation functions for the displace-
ment changes, electric potential changes, and magnetic potential
change, respectively. When the origin of the local coordinate sys-
tem is chosen to be the center of UC, we have,

Giy=0 =0y ¢™=0 (38)

Using the technique of Lagrange multipliers in conjunction
with Egs. (37)-(38), we finally obtain a stationary value problem
defined over UC for y;, ¢4, {™ according to the variational asymp-
totic method [18], such that

Jo= (—AYTRAY+ AY A0+ AY K 4o GAe(t)+1ch0T(t)
0

" Z Josle = )as +,; La(e-e)as
£y / m—m) 9

j=1

+5 hv>

with

xil=xily—ap xi’'=xily-_ap forj=1,2.3

=Cly g =y —gp forj=1.2.3

Ti=CMy =2 ="y = e forj=1,2,3

Matrix AY are given by

AY = AY+AY; (40)

with
AY = [AZ11(H)AZ12(H)AZyy () AZ13(H) AZy3 (1) AF33 (D) AE (F)
AE>(t)AE3(t)AH (t)AHo(t)AH5(1)] T (41)

AY; = [Aén(t)A??lz(t)A??zz(f)A??B(f)A§23(f)Aé33(f)Af51(f)

N N ~ N ~ T
AEz(t)AE3(t)AH1(t)AHz(t)AH3(t)] (42)
where
Aey(t) =~ [M‘;‘f LI "Ava’it x)} (43a)
j i

OALE(L; X)

AE(t) = — o (43b)
AH;(t) = —%x(f;x) (430
Ay = 0}(,(;; 2, 365 44a)
aB(t)= - 22D (44b)
ARt = ——Mcma(;j x9) (440)

In order to avoid the difficulties associated with the unknowns
introduced by the Lagrange multipliers, we reformulate the sta-
tionary problem of the functional in Eq. (39) as the minimum
value of the following functional:

o= / AYTRAY + AYTpA0(t) + AYTK + = GAH(t)+] H(Tt) +ihv de
0
(45)
under the following constraints:
w7 =a =0y y=my forij=1.2.3
Introduce the following matrix form:
-, .
20 000
a a
W a 0 0O
0 2 000
2
a
% 0 4 00
0 2 a5, 00
0 » 00 1
X2
_02 90
AY;=| 0 O 0 4 Xg =y (46)
4
00 0 —3 O om
00 0 —5 O
000 0 —5
0000 —5
000 0 -5

where I', is an operator matrix and y is a column matrix contain-
ing the components of the fluctuation functions. If we discretize y
using the finite elements as

x(Xi:y:) =S (v:) X(x;) (47)

where S representing the shape functions (in assemble sense
excluding the constrained node and slave nodes) and X column
matrix of the nodal value of the fluctuation functions for all active
nodes. Substituting Eqgs. (46) and (47) into Eq. (45), we obtain a
discretized version of the functional as

1 o
Mo=5o (XTEX 4+2X"D AY + AY' D.. AY 42X Dy, A0(8)

+2AY' Doy AO(E)+2X Dy +2AY D, +D,,,, AB(E)

A0(t)?
+Du" ) +Dcc> (48)
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where
E= / (WSRIS)A2 Dy, = / (IS)TRAQ
Q Q
D,. = / Rd2 Dy,= / (pS)Tnde
Q Q
Dy = / 7dQ Dpyc = / (TpS)KdR
Q Q
D,, = / Gd2 D,c— / KA
JQ JQ

Dy = / d2 Dec— / hyde (49)
JQ JQ
Minimizing 17, in Eq. (48), we obtain the following linear
system:
EX = —Dy,AY —DpyA0 — Dy (50)

The fluctuation function X is linearly proportional to AY and A#,
which means the solution can be written as

X =x0AY +x,A0+x (51)

Substituting Eq. (51) into Eq. (48), we can calculate the free
energy density of the UC as

2
Mo = %AVTR*AV LAY AL + AY K+ %G*Aé)(t) + 1c*;A9T(0 + %h*;
0
(52)
with
R* = L(1Dp +D..)
= ) XoVhe ce

171

nt = o) {j (D;J{a +X(T)Dh9> + De€:|
11

K = o [j (D;s)(c +ZEDhc> +D5C:|

1
G = e} [ZEDIW +X;Dhc +wa]

1
cy = E(XZDheTo +D99)

1
hy = E(ZEDhc +Dcc) (53)

where R is a 12 x 12 effective material matrix containing instan-
taneous multiphysics material properties; #* is a 12 x 1 effective
matrix containing the effective instantaneous second order ther-
mal stress tensor [ij the effective pyroelectric vector p¥ and the
effective pyromagnetic vector m¥; JK*is a 12 x 1 effective matrix
containing the effective instantaneous second order tensor o, the
effective vector w} and the effective vector ¥7.

After having uniquely determined the fluctuation functions, we
can recover the local displacement, electric potential, and mag-
netic potential as

r oAV, AV, oAV, ]
X ox. X
Av 1 2 3
Ay 1 9Av, 9AV, 0AV,
Al AV, B3 X, X3 2
A AV 0AV; 0AV; 0AV; .
us = 3 + 0Xq X7 0X3 P +SX
AQ® Ag® 0Ag° 9Ag° IAG°
m m 0Xq 00X 0X3 y 3
A Ag oM@ AT dAT
X, X, X3

(54

where S is different from S and X is different from X due to the
recovery of slave nodes and the constrained node. The increments
of the local strain field, local electrical field, and local magnetic
field can be recovered as

AY = AY+1,5X (55)

Finally, the increments of the increments of the local stress
field, electrical displacement field, and magnetic flux density can
be recovered straightforwardly using the 3D constitutive relations
for the constituent material as

AX = RAY +nA0(t) + K (56)

The simulations of the time-dependent and non-linear thermo-
electro-magneto-viscoelastic-plastic response of smart composites
are performed using an incremental procedure based on Eq. (19).
Once the R*, 4%, and JK* have been determined at the current
mechanical loading, electrical charge, or magnetic charge, one can
determine the current values of variables from previous values and
increments according to

Xcurrent = 7previous +AX (57a)

Ycurrent = Yprevious + AY (57b)

The simulations can be readily performed without applying
various boundary conditions as those are carried out using finite
element unit cell procedures.

4. Numerical examples
4.1. Material properties of constituents

Aluminum: The material properties of aluminum are presented
in Table 1. The mechanical behavior of the aluminum is described
using rate-independent elasto-plastic model expressed in Egs. (10)
and (11). Isotropic linear hardening is assumed for the aluminum.

Piezoelectric and Piezomagnetic material: Table 2 presents the
material properties of piezoelectric material (BaTiO3) and piezo-
magnetic material (CoFe,0,).

Polymer: The polymer is assumed to be isotropic and linear vis-
coelastic materials. The elastic relaxation modulus of the polymer

Table 1
Material properties of aluminum core.

Young's Poisson's  Yielding Hardening CTE a (1/  Dielectric

modulus E ratio v strength oy modulus Er  °C) coefficient k

(MPa) (MPa) (MPa) (C/Vm)

70,000 033 10 1170 23.0x107% 01x10°°
Table 2

Material properties of the composite constituents (BaTiO3 and CoFe,04) [14,15].

BaTiO3 (piezoelectric) CoFe,04 (piezomagnetic)

C11 (GPa) 162 269.5

Cy, (GPa) 78 170

Cy3 (GPa) 77 173

Cy, (GPa) 166 286

Css (GPa) 43 453

k1 (C/V m) 126 x10~° 0.093 x 10~°
k33 (C/V m) 11.2x10~° 0.08 x 10~°
un (N s2/C?) 01x10"% 157 x 1074
uz3(N s2/C?) 0.05x10~* —59%x10~%
ey (C/m?) 18.6 0

51 (C/m?) —44 0

es; (C/m?) 11.6 0

q11 (NJAm) 0 699.7

g1 (NJAm) 0 580.3

gs1 (N/A m) 0 550

ar; (1/°C) 6.4x10°° 10x10°°
az (1/°C) 15.7 x 10°° 10x10°°
as3 (1/°C) 15.7 x 10°° 10x10°°
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can be expressed using Prony series as

n

E(t)=E, (1— ng(1—ef/ﬂ<)> (58)
k=1

where Ej is the instantaneous Young's modulus; g, is dimension-

less modulus and 7, is the time relaxation material parameter. For

simplicity, we considered a special case, namely, n=1, g; =0.5,

and 7; = 30, such that Eq. (58) is reduced to

E(t) :0.5150(1 +e*f/ﬂ) —A+Be~tr (59)

where E;=8000 MPa and p =30, then A=B=4000MPa. The
dielectric coefficient and magnetic permeability of the polymer
are assumed to be constant and assigned as k=0.1x
10~° C/(Vm) and x=0.01 x 10~* Ns?/C?, respectively. The ther-
mal expansion of the polymer material are kept constant as
a=54x10"%°Cc L.

The time-scale shift factor ar in Eq. (3) is determined by emp-
irical relationship of Williams-Landel-Ferry (WLF) [19],

_ G(T-To)
Co+(T—-To)
where C; and C, are material constants determined through least
squares fitting. In this example, the values of C; and C, are set as
C1=4.92 and C; =215.0.
To in Eq. (60) is the reference temperature and the temperature
T at time t is given by

T=Tog+0=Ty+Cot 61)

log ar(T) = (60)

where Cy is the temperature change rate.
Therefore, the reduced time &(t + At), &(t), and &(r) are given by

CyCot’

t+At
Et+AD) = / 10% Fordt’
0

t Gt
<§(t):/ 102 +%7dt’

0

T CyCot’
&) = /0 105 v de (62)

The stress relaxation stiffness matrix [Lyy(t)] in Eq. (7a) is obt-
ained as

[Lia()] = ffIW] (63)

where the coefficient ff is computed using Simpson's rule of num-
erical integration as

ff= é(fL+4fm +fu) (64)
where
Ht+AD &)

fL=A+Be p
fu=A+B
t+AD—¢(t/2)
fm=A+Be P
The matrix[W] in Eq. (63) is given by
1-v v v 000
v 1-v v 000
1 v v 1—v 0 0 O
W=Gd—m| 0 0 0 (-2 0 0
000 0 (1-2v)/2 0
000 0 0 (1-2v)/2
(65)

with v being the Poisson's ratio of the polymer, which is assumed
to be constant v =0.4.

The matrix [y;(t)] in Eq. (7a) is obtained as
[yij(t)} = [Lijkl(t)} {a} (66)

where {a} is a column matrix containing thermal expansion coe-
fficients of the polymer materials.
The coefficient matrix of w;(t) in Eq. (7a) is calculated as

0] = 37 (160 7173 =) Wit
i=1

iAt
+ (/ (e* (trat=n/r_e *<f*f>/ﬂ) [W]dr) {a}AH(i)}
(i—1)At
(67)

where [A&(i)] is 6 x 1 column matrix containing strain increments
during the ith time step At; A6(i) are the increment of temperature
change during the ith time step At; and n=t/At.

4.2. Model verification

Let us firstly calculate the stress—strain hysteresis loop of the
polymer matrix using VAMUCH and ABAQUS. The polymer was
simultaneously applied with cyclic stress loading and various
temperature changes as shown in Fig. 2. The temperature changes
increase linearly and uniformly up to 20 °C, 40 °C, 60 °C, and 80 °C,
respectively. The corresponding responses of the polymer are
illustrated in Fig. 3 in which the stress—strain hysteresis loop of
the polymer without thermal effects is also plotted for the sake of
comparison. Since the VAMUCH predictions are identical to
ABAQUS results, only VAMUCH results are illustrated in Fig. 3
from which one can see that the finally remained strains increase
as the temperature changes increase after reverse unloading.

a

15
12

stress (MPa)

50 100 150 200 250 300 350 400

b & & o w o ©

-12

-15
Time (s)

90

Temperaure °C

0 50 100 150 200 250 300 350 400
Time (s)
Fig. 2. (a) Cyclic stress loading and (b) temperature changes increase linearly and

uniformly up to 20 °C, 40 °C, 60 °C, and 80 °C, respectively, during cyclic stress
loading.
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Fig. 3. Predicted uniaxial stress-strain hysteresis curves of linear viscoelastic
polymer when the cyclic stress loading and temperature change were applied
simultaneously.
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Fig. 4. Uniaxial global stress-strain hysteresis loops of aluminum fiber reinforced
composites subjected to couple various temperature changes and: (a) longitudinal
cyclic loading @11 vs €17 and (b) transverse cyclic loading &2, Vs &5;.

Let us consider an aluminum fiber reinforced polymer matrix
composites with the volume fraction of aluminum fiber being
vof=0.4. The aluminum fiber is of circular shape and in square
array. The composite is simultaneously applied with the cyclic
stress loading (along fiber direction and transverse direction, res-
pectively) and various temperature changes as shown in Fig. 2. The
stress—strain hysteresis curves of aluminum fiber polymer matrix
composite due to axial and transverse cyclic loadings coupled with
temperature change are plotted in Fig.4 from

which one can observe that there are excellent agreements
between the predictions of VAMUCH and ABAQUS.

Next consider a piezoelectric (BaTiOs) fiber reinforced alumi-
num matrix composite with the volume fraction of BaTiOs fiber
being vof=0.4. The composite was simultaneously applied with
temperature changes shown in Fig. 2(b) and electrical field E;
along the fiber direction. Fig. 5 shows the variation of the effective
induced axial strain g;1 of traction-free piezoelectric (BaTiOs) fiber
reinforced aluminum matrix composite with the applied electrical
field E; at various temperature changes. It can be seen that
VAMUCH and ABAQUS provide identical predictions. VAMUCH
can also accurately recover the local fields based on the global
responses and the recovery relations obtained from the micro-
mechanics analysis. Fig. 6 illustrates the contour plot of local stress
component o5, (predicted by VAMUCH) and the comparison of the
distributions of o5, along the y, axis predicted by VAMUCH and
ABAQUS. The results were calculated when the electrical field E;
and temperature change increased up to 1.96 MV/m and 60 °C,
respectively. One can see from Fig. 6 that the recovery capability of
VAMUCH is validated by ABAQUS results.

4.3. Effective responses of aluminum core piezoelectric and
piezomagnetic fiber (APPF) composites

In this section, the effective responses of aluminum core piezo-
electric and piezomagnetic fiber (APPF) reinforced polymer matrix
composite whose microstructure is shown in Fig. 7 were investigated
using VAMUCH. The volume fractions of polymer matrix, aluminum
core, and piezoelectric material are 0.55, 0.3, and 0.05, respectively.

We firstly considered the effects of strain rates on the uniaxial
tension behavior. Fig. 8 presents the effective uniaxial tension
stress—strain curves of APPF reinforced polymer matrix composite
at various strain rates while all electrical fields and magnetic fields

0.0002

axial strain

———VAMUCH-no thermal ===-- ABAQUS-no thermal

—— VAMUCH-40 oC
—— VAMUCH-60 oC _-

-+ =- ABAQUS-20 oC
e e o e ABAQUS-40 0oC
ABAQUS-60 oC

-0.0004 —
electric field E11 (MV/m)

Fig. 5. The effective induced axial strain #; of traction-free piezoelectric (BaTiOs3)
fiber reinforced aluminum matrix composite versus the applied electrical field E;
at various temperature changes.
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- = ABAQUS
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Fig. 6. The recovered local stress of piezoelectric (BaTiOs3) fiber reinforced aluminum matrix composite: (a) Contour plot of stress component 5 (Pa) and (b) the distribution

of 6, along the y, axis.

Piezomagnetic materials |

Piezoelectric materials |

Aluminum core

Polymer matrix

Fig. 7. Microstructure of smart composites consisting of aluminum core, piezo-
magnetic material, piezoelectric material, and polymer matrix.

are kept zero. Obviously, the tension behaviors of the composite
are rate dependent due to the time dependent behavior of the
polymer matrix while the influences of strain rates are more
pronounced on the transverse tension than on axial tension.

Let us consider the thermal induced axial stress z1; of APPF
polymer matrix composites when all mechanical strains, electric
fields, and magnetic fields are kept as zero. This is shown in Fig. 9,
which demonstrates that the magnitude of induced axial stress
increases with the increase of the temperature change rate. The
variation of slope of the curve of induced stress 5;; vs tempera-
ture change is due to the modulus relaxation of the polymer
matrix.

When all mechanical strains are equal to zero, the induced axial
stresses 511 of APPF polymer matrix composites are generated by
axial electric field E; and axial magnetic field H; are presented in
Figs. 10 and 11, respectively. It can be seen that the rate of E; and
H,; do not have significant influences on the induced longitudinal
overall stress @11 .

The deformation of smart composites induced by electric input
can be utilized for sensoring applications. Figs. 12 and 13 illustrate
such responses of traction free APPF reinforce polymer matrix

a
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12 _ ,/,—’/’
— = =
& ,/f’;
\§_, 9 1 7oz
7] =
8 7
k7
T 61
2 strain rate=1e-6/s
----- strain_rate=5e-6/s
31 — — strain_rate=2.5e-6/s
0 T T T
0 0.0001 0.0002 0.0003 0.0004
axial strain
14
12 1
g
s 10 A ’,a"/
& ,r"’/
L 8 -
k7 ,r”
@ o
S 61 o
? - .
c /’/ strain rate=1e-6/s
S 4 /s
= 4t .
’// ----- strain_rate=5e-6/s
7
21 — — strain_rate=2.5e-6/s
0 T T T T
0 0.0002 0.0004 0.0006 0.0008 0.001

Transverse strain

Fig. 8. Effective uniaxial tension stress-strain curves of APPF reinforced polymer
matrix composite at various strain rates while all electrical fields and magnetic
fields are kept zero: (a) axial tension @y, vs €y and (b) transverse tension G,, Vs &;.
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Fig. 9. Induced axial stress 17 of APPF polymer matrix composite due to the
temperature change at three different temperature change rates while all mechan-
ical strains, electric fields, and magnetic fields are kept zero.
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Fig. 10. Induced axial stress #1; of APPF polymer matrix composite due to the
electric field E; at three different electric field rates while all mechanical strains,
other components of electric fields, and magnetic fields are kept zero.
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Fig. 11. Induced axial stress s1; of APPF polymer matrix composite due to the
magnetic field H, at three different magnetic field rates while all mechanical
strains, other components of magnetic fields, and electric fields are kept zero.
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Fig. 12. The effective induced axial strain #; of traction-free APPF reinforced
polymer matrix composites versus the applied electric field E; for three different
electric field rates.
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Fig. 13. The effective induced axial strain #; of traction-free APPF reinforced
polymer matrix composites versus the applied magnetic field H; for three different
magnetic field rates.

composites. These two figures also clearly illustrate that the
yielding of aluminum core causes the change of the slope of the
lines of 11 vs E; and &;; vs H; when the axial electrical field E; and
axial magnetic field H; increased up to certain values.

5. Conclusions

We have developed a general-purpose micromechanical model
that is capable of predicting the fully coupled thermo-electro-mag-
neto-viscoelastic-plastic response of smart composites. In view of the
time dependent characteristics and non-linearity of the composite,
instantaneous tangential electro-magneto-mechanical matrices asso-
ciated with an incremental procedure were established. The proposed
model can efficiently capture the rate-dependent and non-linear
behavior of multiphase smart composite consisting of linear viscoe-
lastic materials, piezoelectric materials, piezomagnetic materials, and
metallic phases.
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