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a b s t r a c t

The focus of the present paper is to construct a general purpose micromechanics model to predict the
effective fully coupled time-dependent and non-linear multiphysics responses of smart composites. The
present model is established on the basis of the variational asymptotic method and implemented using
the finite element method. In light of the time-dependent and non-linear characteristics of composites,
an incremental procedure in conjunction with an instantaneous tangential electromagnetomechanical
matrix of composites was established. The accuracy of the proposed model was verified through the
comparison with ABAQUS results. Finally, a numerical example was employed to demonstrate the
capability of the proposed model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The smart composite consisting of piezoelectric and piezo-
magnetic constituents displays a magneto-electric coupling effect
that is absent in constituents [1–9]. The magneto-electric coupling
effect created by the interaction of piezoelectric phases and piez-
omagnetic phases has recently been extensively investigated due
to their broad engineering applications [10–12]. Since the piezo-
electric and piezomagnetic ceramics are brittle and susceptible to
fracture, adding a polymer or metallic alloy matrix into the two-
phase electromagnetoelastic composite will increase the ductility
and formability of the composites. To date, several investigations
have been conducted for the response of smart composites cont-
aining metallic phases. For example, Bednarcyk [13] developed a
micro-macro theory to predict the fully coupled electro-magneto-
thermo-elasto-plastic behavior of arbitrary composite laminates
using Generalized Method of Cell (GMC). Due to the introduction
of linear viscoelastic polymer matrix, the composites exhibit time
dependent behavior [14]. The reports that are involved in the
response of smart composites containing both metallic phases and
viscoelastic phases is still limited. Therefore, there is a need to
develop an efficient micromechanical tool for the analysis and
design of such composites.

The goal of this paper is to develop a general purpose micro-
mechanics model for predicting the time-dependent, non-linear,
and multiphysics response of smart composites. In light of the
time-dependent characteristics and non-linearity of constitutive
relations, an incremental procedure associated with instantaneous
tangential electromechanical matrix was established based on the
micromechanics framework VAMUCH [15]. In order to demon-
strate the capability, a smart composites consisting of metallic
phase, piezoelectric material, piezomagnetic material, and linear
viscoelastic matrix was analyzed using the proposed model.

2. Incremental constitutive equations of materials

2.1. Constitutive equations for linear thermo-viscoelastic polymer

Considering the linear thermo-viscoelastic polymer having no
history of stress and deformation before time t¼0, then based on
the Boltzmann superposition principle, the constitutive equations
for the linear thermo-viscoelastic polymer can be expressed in the
time domain in the following way:

σij tð Þ ¼
Z t

0
Bijkl t�τð Þ_εkl τð Þþβij t�τð Þ_θ τð Þ� �

dτ ð1aÞ

Di tð Þ ¼
Z t

0
kij t�τð Þ _Ej τð Þþpi t�τð Þ_θ τð Þ
h i

dτ ð1bÞ
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Bi tð Þ ¼
Z t

0
μij t�τð Þ _Hj τð Þþmi t�τð Þ_θ τð Þ
h i

dτ ð1cÞ

where Bijkl tð Þ, kij tð Þ, and μij tð Þ are the stress relaxation stiffness,
dielectric tensor, and magnetic permeability tensor, respectively;
_εkl τð Þ is the strain rate; and _Ej τð Þ and _Hj τð Þ are the electric field rate
and magnetic field rate, respectively; _θ τð Þ is the temperature
change rate; σij tð Þ, Di tð Þ, and Bi tð Þ are the instantaneous stress
tensor, electrical displacement vector, and magnetic induction
vector, respectively; βijðtÞ, pi tð Þ, and mi tð Þ are the instantaneous
thermal stress tensor, pyroelectric vector, and pyromagnetic vec-
tor, respectively. Note that βij tð Þ ¼ �Bijkl tð Þαkl with αkl being ther-
mal expansion coefficients. In this study, the αkl is assumed to be
constant.

According to the time–temperature superposition principle [16],
the real time t has to be replaced with reduced time ξ in order to
account for the variation of material's properties of polymer with
temperature. Hence, Eq. (1a)–(1c) can be rewritten as

σij tð Þ ¼
Z t

0
Bijkl ξ�ξ0ð Þ_εkl ξ0ð Þþβij ξ�ξ0ð Þ_θ ξ0ð Þ� �

dξ0 ð2aÞ

Di tð Þ ¼
Z t

0
kij ξ�ξ0ð Þ _Ej ξ0ð Þþpi ξ�ξ0ð Þ_θ ξ0ð Þ
h i

dξ0 ð2bÞ

Bi tð Þ ¼
Z t

0
μij ξ�ξ0ð Þ _Hj ξ

0ð Þþmi ξ�ξ0ð Þ_θ ξ0ð Þ
h i

dξ0 ð2cÞ

The reduced time ξ¼ ξ tð Þ is defined by

ξ tð Þ ¼
Z t

0

dt0

aT
ð3Þ

where aT is a time-scale shift factor, and ξ0 ¼ ξ τð Þ.
As pointed out by Pyatigorets et al. [17], since the correspond-

ing value of real time t can be found for each value of reduced time
ξ and vice versa, the stress and strain in the reduced time domain
can be replaced with their values found for the corresponding real
time, such that

σij ξð Þ � σij ξ tð Þð Þ � σij tð Þ; εij ξð Þ � εij ξ tð Þð Þ � εij tð Þ ð4Þ
Hence, the Eq. (2a)–(2c) can be simplified as

σij tð Þ ¼
Z t

0
Bijkl ξ tð Þ�ξ τð Þð Þ_εkl τð Þþβij ξ tð Þ�ξ τð Þð Þ_θ τð Þ� �

dτ ð5aÞ

Di tð Þ ¼
Z t

0
kij ξ tð Þ�ξ τð Þð Þ _Ej τð Þþpi ξ tð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ ð5bÞ

Bi tð Þ ¼
Z t

0
μij ξ tð Þ�ξ τð Þð Þ _Hj τð Þþmi ξ tð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ ð5cÞ

In light of the non-linear, time dependent, and multiphysics
response of the composites, our analysis need to be incremental.
The incremental formulations of Eq. (5a)–(5c) can be expressed as

Δσij tð Þ ¼ σij tþΔtð Þ�σij tð Þ

¼
Z tþΔt

t
Bijkl ξ tþΔtð Þ�ξ τð Þð Þ_εkl τð Þþβij ξ tþΔtð Þ�ξ τð Þð Þ_θ τð Þ� �

dτ

þ
Z t

0
Bijkl ξ tþΔtð Þ�ξ τð Þð Þ_εkl τð Þþβij ξ tþΔtð Þ�ξ τð Þð Þ_θ τð Þ� �

dτ

�
Z t

0
Bijkl ξ tð Þ�ξ τð Þð Þ_εkl τð Þþβij ξ tð Þ�ξ τð Þð Þ_θ τð Þ� �

dτ ð6aÞ

ΔDi tð Þ ¼Di tþΔtð Þ�Di tð Þ

¼
Z tþΔt

t
kij ξ tþΔtð Þ�ξ τð Þð Þ _Ej τð Þþpi ξ tþΔtð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ

þ
Z t

0
kij ξ tþΔtð Þ�ξ τð Þð Þ _Ej τð Þþpi ξ tþΔtð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ

�
Z t

0
kij ξ tð Þ�ξ τð Þð Þ _Ej τð Þþpi ξ tð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ ð6bÞ

ΔBi tð Þ ¼ Bi tþΔtð Þ�Bi tð Þ

¼
Z tþΔt

t
μij ξ tþΔtð Þ�ξ τð Þð Þ _Hj τð Þþmi ξ tþΔtð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ

�
Z t

0
μij ξ tþΔtð Þ�ξ τð Þð Þ _Hj τð Þþmi ξ tþΔtð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ

�
Z t

0
μij ξ tð Þ�ξ τð Þð Þ _Hj τð Þþmi ξ tð Þ�ξ τð Þð Þ_θ τð Þ
h i

dτ ð6cÞ

Although the strain rate, electrical field rate, and magnetic field
rate are not necessarily constant in the whole time domain, it is
reasonable to assume that the strain rate, electrical field rate, and
magnetic field rate are kept constant during each time increment
Δt. The temperature change rate can be kept uniform in the whole
composites. Then, the Eq. (6a)–(6c) can be rephrased as

Δσij tð Þ ¼ Lijkl tð ÞΔεkl tð Þþγij tð ÞΔθ tð Þþωij tð Þ ð7aÞ
with

Lijkl tð Þ ¼
1
Δt

Z tþΔt

t
Bijkl ξ tþΔtð Þ�ξ τð Þ½ �dτ

γij tð Þ ¼
1
Δt

Z tþΔt

t
βij ξ tþΔtð Þ�ξ τð Þ½ �dτ

� �

ωij tð Þ ¼
Z t

0
Bijkl ξ tþΔtð Þ�ξ τð Þð Þ�Bijkl ξ tð Þ�ξ τð Þð Þ� �

_εkl τð Þ dτ

þ
Z t

0
βij ξ tþΔtð Þ�ξ τð Þð Þ�βij ξ tð Þ�ξ τð Þð Þ� �

_θ τð Þdτ

�ΔDi tð Þ ¼ �Kik tð ÞΔEk tð Þ�Pi tð ÞΔθ�ϖi tð Þ ð7bÞ
with

Kik tð Þ ¼ 1
Δt

Z tþΔt

t
kik ξ tþΔtð Þ�ξ τð Þð Þdτ

Pi tð Þ ¼
1
Δt

Z tþΔt

t
pi ξ tþΔtð Þ�ξ τð Þð Þdτ

� �

ϖi tð Þ ¼
Z t

0
kij ξ tþΔtð Þ�ξ τð Þð Þ�kij ξ tð Þ�ξ τð Þð Þ� � _Ej τð Þ dτ

þ
Z t

0
pi ξ tþΔtð Þ�ξ τð Þð Þ�pi ξ tð Þ�ξ τð Þð Þ� �

_θ τð Þdτ
�ΔBi tð Þ ¼ �Nik tð ÞΔHk tð Þ�Mi tð ÞΔθ�Ψ i tð Þ ð7cÞ

with

Nik tð Þ ¼ 1
Δt

Z tþΔt

t
μik ξ tþΔtð Þ�ξ τð Þð Þdτ

Mi tð Þ ¼
1
Δt

Z tþΔt

t
mi ξ tþΔtð Þ�ξ τð Þð Þdτ

� �

Ψ i tð Þ ¼
Z t

0
μij ξ tþΔtð Þ�ξ τð Þð Þ�μij ξ tð Þ�ξ τð Þð Þ� � _Hj τð Þ dτ

þ
Z t

0
mi ξ tþΔtð Þ�ξ τð Þð Þ�mi ξ tð Þ�ξ τð Þð Þ½ �_θ τð Þdτ

2.2. Constitutive equations for piezoelectric-piezomagnetic materials

The elastic and the dielectric responses are coupled in piezo-
electric materials where the mechanical variables of stress, and
strain are related to each other as well as to the electric variables
of electric field and electric displacement. The coupling between
mechanical and electric fields is described by piezoelectric coeffi-
cients. The linear rate independent coupled constitutive equations
of piezoelectric materials are given by

σij ¼ Ce
ijklεkl�eijkEk�qijkHkþβijθ ð8aÞ

Di ¼ eiklεklþkikEkþaikHkþpiθ ð8bÞ
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Bi ¼ eiklεklþaikEkþμikHkþmiθ ð8cÞ
where Ce

ijkl, eijk, qijk, and βij are the elastic, piezoelectric, piezo-
magnetic and thermal stress tensors, respectively (note that
βij ¼ �Ce

ijklαkl with αkl as the thermal expansion strain tensor);
kik, aik, and μik are the dielectric, magnetoelectric, and magnetic
permeability tensors, respectively; Ek and Hk are the electrical field
and magnetic field vectors, respectively.

The incremental form of Eq. (8a)–(8c) is expressed as

Δσij ¼ Ce
ijklΔεkl�eijkΔEk�qijkΔHkþβijΔθ ð9aÞ

�ΔDi ¼ �eiklΔεkl�kikΔEk�aikΔHk�piΔθ ð9bÞ

�ΔBi ¼ �eiklΔεkl�aikΔEj�μikΔHk�miΔθ ð9cÞ

2.3. Constitutive equations for metal

The incremental stress–strain relation of metals can be exp-
ressed as

Δσij ¼ CijklΔεklþβijΔθ ð10aÞ

�ΔDi ¼ �kikΔEk�piΔθ ð10bÞ

�ΔBi ¼ μikΔHk�miΔθ ð10cÞ
where Cijkl are the components of the time independent fourth-
order instantaneous tangent stiffness tensor which is the elastic
stiffness tensor Ce

ijkl when the stress state of the material point is
below yielding and the elastoplastic tangent stiffness tensor Cep

ijkl
when the stress state of the material point beyond yielding. Acc-
ording to the classical plasticity theory, the Cep

ijkl is given by

Cep
ijkl ¼ Ce

ijkl�
Ce
ijmnð∂f =∂σmnÞð∂f =∂σpqÞCe

pqkl

ð∂f =∂σrsÞCe
rstuð∂f =∂σtuÞ�ð∂f =∂pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þð∂f =∂σdwÞð∂f =∂σdwÞ

p
 !

ð11Þ
where f and p in Eq. (8a)–(8c) are yielding function and effective
plastic strain, respectively.

3. Micromechanics formulations

Consider the smart composites with periodic microstructure as
shown in Fig. 1. Two coordinate systems including x¼ x1; x2; x3ð Þ
and y¼ y1; y2; y3

� �
are adopted to facilitate the micromechanics

formulations. We use xi as the global coordinates to describe the

macroscopic structure and yi parallel to xi as the local coordinates
to describe the UC (here and throughout the paper, Latin indices
assume 1, 2, and 3 and repeated indices are summed over their
range except where explicitly indicated). We choose the origin of
the local coordinate system yi to be the geometric center of UC.

3.1. Genera incremental formulations of the smart composite and its
constituents

The incremental formulations of polymer, piezoelectric-
piezomagnetic materials, and metal described by Eqs. (7a)–(7c),
(9a)–(9c), and (10a)–(10c) can be extended to the following
general incremental formulations:

Δσij tð Þ ¼Mijkl tð ÞΔεkl tð Þ�eijk tð ÞΔEk tð Þ�qijk tð ÞΔHk tð Þþβij tð ÞΔθ tð Þþωij tð Þ
ð12aÞ

�ΔDi tð Þ ¼ �eikl tð ÞΔεkl tð Þ�kik tð ÞΔEk�aik tð ÞΔHk tð Þ�pi tð ÞΔθ tð Þ�ϖi tð Þ
ð12bÞ

�ΔBi tð Þ ¼ �eikl tð ÞΔεkl tð Þ�aik tð ÞΔEk�μik tð ÞΔHk tð Þ�mi tð ÞΔθ tð Þ�Ψ i tð Þ
ð12cÞ

where

Mijkl tð Þ ¼

Lijkl tð Þ for polymer materials
Ce
ijkl for piezoelectric materials

Ce
ijkl for piezomagnetic materials

Ce
ijkl or C

ep
ijkl for metal

8>>>>><
>>>>>:

eijk tð Þ ¼

0 for polymer materials
eijk for piezoelectric materials
0 for piezomagnetic materials
0 for metal

8>>><
>>>:

qijk tð Þ ¼

0 for polymer materials
0 for piezoelectric materials
qijk for piezomagnetic materials
0 for metal

8>>><
>>>:

Fig. 1. A sketch of periodic heterogeneous materials (only two-dimensional (2D) UC is drawn for clarity).
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kik tð Þ ¼

Kik tð Þ for polymer materials
kik for piezoelectric materials
kik for piezomagnetic materials
kik for metal

8>>>><
>>>>:

μik tð Þ ¼

Nik tð Þ for polymer materials
μik for piezoelectric materials
μik for piezomagnetic materials
μik for metal

8>>>><
>>>>:

βij tð Þ ¼

gij tð Þ for polymer materials
βij for piezoelectric materials
βij for piezomagnetic materials
βij for metal

8>>>><
>>>>:

ωij tð Þ ¼

ωij tð Þ for polymer materials
0 for piezoelectric materials
0 for piezomagnetic materials
0 for metal

8>>><
>>>:

ϖi tð Þ ¼

ϖij tð Þ for polymer materials
0 for piezoelectric materials
0 for piezomagnetic materials
0 for metal

8>>><
>>>:

Ψ i tð Þ ¼

Ψ i tð Þ for polymer materials
0 for piezoelectric materials
0 for piezomagnetic materials
0 for metal

8>>><
>>>:

Note that aik tð Þ, pi tð Þ, and mi tð Þ are absent in individual material
constituents but existing in composites.

Let us define the vectors ΔX and ΔY as follows:

ΔX ¼ Δσ11ðtÞ Δσ12ðtÞ Δσ22ðtÞ Δσ13ðtÞ Δσ23ðtÞ Δσ33ðtÞ �ΔD1ðtÞ½

�ΔD2ðtÞ �ΔD3ðtÞ �ΔB1ðtÞ �ΔB2ðtÞ �ΔB3ðtÞ�T ð13Þ

ΔY ¼ Δε11ðtÞ Δε12ðtÞ Δε22ðtÞ Δε13ðtÞ Δε23ðtÞ Δε33ðtÞ ΔE1ðtÞ½
ΔE2ðtÞ ΔE3ðtÞ ΔH1ðtÞ ΔH2ðtÞ ΔH3ðtÞ�T ð14Þ

The compact matrix form of Eq. (12a)–(12c) is given by

ΔX ¼ RΔYþηΔθ tð ÞþЖ ð15Þ
where Δθ tð Þ is the instantaneous increment of temperature cha-
nge. R is a 12�12 instantaneous material matrix and expressed as

R¼
M �e �q

�eT �k �a

�qT �aT �μ

2
64

3
75 ð16Þ

where M is a 6�6 submatrix for Mijkl tð Þ coefficients; e is a 6�3
submatrix for eijk tð Þ coefficients; q is a 6�3 submatrix for qijk tð Þ
coefficients; k is a 3�3 submatrix for kik tð Þ coefficients; a is a 3�3
submatrix for aik tð Þ coefficients; and μ is a 3�3 submatrix for
μijk tð Þ coefficients. The superscript “T” means transpose matrix.

In Eq. (15), η is a 12�1 matrix and expressed as

η¼
β

�p

�m

8><
>:

9>=
>; ð17Þ

where β is a 6�1 submatrix for βijðtÞ coefficients; m is a 3�1
submatrix for miðtÞ coefficients; and p is a 3�1 submatrix for piðtÞ
coefficients.

In Eq. (15), Ж is a 12�1 matrix and expressed as

Ж¼
ω
ϖ

Ψ

8><
>:

9>=
>; ð18Þ

where ω is a 6�1 submatrix for ωijðtÞ coefficients; ϖ is a 3�1
submatrix for ϖiðtÞ coefficients; and Ψ is a 3�1 submatrix for
Ψ iðtÞ coefficients.

The effective instantaneous thermo-electro-magneto-viscoe-
lastic-plastic coefficients of smart composite materials can be defi-
ned in the following two ways:

ΔX ¼ RnΔYþηnΔθðtÞþЖn ð19Þ

1
Ω

Z
Ω

1
2
ΔYTRΔYþΔYTηΔθ tð ÞþΔYTЖþ1

2
GΔθ tð Þþ1

2
cv
Δθ tð Þ2
T0

þ1
2
hv

" #
dΩ

¼ 1
2
ΔY

T
RnΔYþΔY

T
ηnΔθ tð ÞþΔY

T
Жnþ1

2
GnΔθ tð Þþ1

2
cnv
Δθ tð Þ2
T0

þ1
2
hn

v

ð20Þ
where G is the energy change per unit temperature; cv is the
specific heat per unit volume at constant volume; T0 is the refe-
rence temperature at which the constituent material is stress free;
hv is the energy change similar to cv. In Eqs. (19)–(20), “over-bar”
indicates variables which are used in the macroscopic analysis of
homogenized materials, and superscripts “n” denote the effective
properties whose calculations are determined by the microme-
chanics model one employs. Ω is the volume of unit cell.

3.2. VAMUCH model

The total change of potential energy of the composites can be
formulated as

Π ¼
Z
ℛ
〈
1
2
ΔYTRΔYþΔYTηΔθ tð ÞþΔYTЖþ1

2
GΔθ tð Þþ1

2
cv
Δθ tð Þ2
T0

þ1
2
hv〉dℛ

ð21Þ
with

Δεij t; x; yð Þ ¼ 1
2

∂Δui t; x; yð Þ
∂yj

þ∂Δuj t; x; yð Þ
∂yi

" #
�Δu ij jð Þ ð22Þ

ΔEi t; x; yð Þ ¼ �∂Δ∅e t; x; yð Þ
∂yi

ð23Þ

ΔHi t; x; yð Þ ¼ �∂Δ∅m t; x; yð Þ
∂yi

ð24Þ

where Δui, Δ∅e, and Δ∅m are the increments of displacement
vector, electrical potential, and magnetic potential, respectively.
Since Δui, Δ∅e, and Δ∅m are continuous functions at the interfaces
between adjacent unit cells, we have

Δui t; x1; x2; x3; d1=2; y2; y3
� �¼Δui t; x1þd1; x2; x3; �d1=2; y2; y3

� �
Δui t; x1; x2; x3; y1; d2=2; y3
� �¼Δui t; x1; x2þd2;n3; y1; �d2=2; y3

� �
Δui t; x1; x2; x3; y1; y2; d3=2
� �¼Δui t; x1; x2; x3þd3; y1; y2; �d3=2

� �
ð25Þ

Δ∅e t; x1; x2; x3; d1=2; y2; y3
� �¼Δ∅e t; x1þd1; x2; x3; �d1=2; y2; y3

� �
Δ∅e t; x1; x2; x3; y1;d2=2; y3

� �¼Δ∅e t; x1; x2þd2;n3; y1; �d2=2; y3
� �

Δ∅e t; x1; x2; x3; y1; y2; d3=2
� �¼Δ∅e t; x1; x2; x3þd3; y1; y2; �d3=2

� �
ð26Þ

Δ∅m t; x1; x2; x3; d1=2; y2; y3
� �¼Δ∅m t; x1þd1; x2; x3; �d1=2; y2; y3

� �
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Δ∅m t; x1; x2; x3; y1; d2=2; y3
� �¼Δ∅m t; x1; x2þd2;n3; y1; �d2=2; y3

� �
Δ∅m t; x1; x2; x3; y1; y2; d3=2

� �¼Δ∅m t; x1; x2; x3þd3; y1; y2; �d3=2
� �

ð27Þ
In Eq. (28) and throughout this paper, the angle bracket den-

otes average over the domain of the UC, that is

〈f 〉¼ 1
Ω

Z
Ω
f dΩ ð28Þ

with Ω denoting the unit cell domain.
Because Δui, Δ∅e, and Δ∅m are continuous function defined in

the UC, we can denote the average of Δui, Δ∅e, and Δ∅m over the
UC as Δvi, Δφe, and Δφm, respectively, such that

Δvi ¼ 〈Δui〉 Δφe ¼ 〈Δ∅e〉 Δφm ¼ 〈Δ∅m〉 ð36Þ
Taking advantage of the method of change of variables for Δui,
Δ∅e, and Δ∅m, we can obtain

Δui t; x; yð Þ ¼Δvi t; xð Þþyj
∂Δvi
∂xj

þχi t; x; yð Þ ð37aÞ

Δ∅e t; x; yð Þ ¼Δφe t; xð Þþyj
∂Δφe

∂xj
þζe t; x; yð Þ ð37bÞ

Δ∅m t; x; yð Þ ¼Δφm t; xð Þþyj
∂Δφm

∂xj
þζm t; x; yð Þ ð37cÞ

where χi, ζ
e, and ζm are the fluctuation functions for the displace-

ment changes, electric potential changes, and magnetic potential
change, respectively. When the origin of the local coordinate sys-
tem is chosen to be the center of UC, we have,

〈χi〉¼ 0 〈ζe ¼ 0〉 〈ζm〉¼ 0 ð38Þ
Using the technique of Lagrange multipliers in conjunction

with Eqs. (37)–(38), we finally obtain a stationary value problem
defined over UC for χi, ζ

e, ζm according to the variational asymp-
totic method [18], such that

JΩ ¼ 〈
1
2
ΔYTRΔYþΔYTηΔθ tð ÞþΔYTЖþ1

2
GΔθ tð Þþ1

2
cv
Δθ tð Þ2
T0

þ1
2
hv〉

þ
X3
j ¼ 1

Z
Sj
λij χþ j

i �χ� j
i

	 

dSjþ

X3
j ¼ 1

Z
Sj
gi ζeþ j�ζe� j

	 

dSj

þ
X3
j ¼ 1

Z
Sj
hi ζmþ j�ζm� j

	 

dSj ð39Þ

with

χþ j
i ¼ χi j yj ¼ dj=2 χ� j

i ¼ χi j yj ¼ �dj=2 for j¼ 1;2;3

ζeþ j ¼ ζe j yj ¼ dj=2 ζe� j ¼ ζe j yj ¼ �dj=2 for j¼ 1;2;3

ζmþ j ¼ ζm j yj ¼ dj=2 ζm� j ¼ ζm j yj ¼ �dj=2 for j¼ 1;2;3

Matrix ΔY are given by

ΔY ¼ΔYþΔY1 ð40Þ
with

ΔY ¼ Δε11ðtÞΔε12ðtÞΔε22ðtÞΔε13ðtÞΔε23ðtÞΔε33ðtÞΔE1ðtÞ
�
ΔE2ðtÞΔE3ðtÞΔH1ðtÞΔH2ðtÞΔH3ðtÞ

�T ð41Þ

ΔY1 ¼ Δε̂11ðtÞΔε̂12ðtÞΔε̂22ðtÞΔε̂13ðtÞΔε̂23ðtÞΔε̂33ðtÞΔÊ1ðtÞ
h
ΔÊ2ðtÞΔÊ3ðtÞΔĤ1ðtÞΔĤ2ðtÞΔĤ3ðtÞ

iT
ð42Þ

where

ΔεijðtÞ ¼
1
2

∂Δvi t; xð Þ
∂xj

þ∂Δvj t; xð Þ
∂xi

� �
ð43aÞ

ΔEi tð Þ ¼ �∂Δζe t; xð Þ
∂xi

ð43bÞ

ΔHi tð Þ ¼ �∂Δζm t; xð Þ
∂xi

ð43cÞ

Δε̂ij tð Þ ¼
1
2

∂χi t; x; yð Þ
∂yj

þ∂χj t; x; yð Þ
∂yi

" #
ð44aÞ

ΔÊi tð Þ ¼ �∂Δζe t; x; yð Þ
∂yi

ð44bÞ

ΔĤi tð Þ ¼ �∂Δζm t; x; yð Þ
∂yi

ð44cÞ

In order to avoid the difficulties associated with the unknowns
introduced by the Lagrange multipliers, we reformulate the sta-
tionary problem of the functional in Eq. (39) as the minimum
value of the following functional:

ΠΩ ¼ 1
Ω

Z
Ω

1
2
ΔYTRΔYþΔYTηΔθ tð ÞþΔYTЖþ1

2
GΔθ tð Þþ1

2
cv
θ tð Þ2
T0

þ1
2
hv

" #
dΩ

ð45Þ
under the following constraints:

χþ j
i ¼ χ� j

i ζeþ j ¼ ζe� j ζmþ j ¼ ζm� j for i; j¼ 1;2;3

Introduce the following matrix form:

ΔY1 ¼

∂
∂y1

0 0 0 0

∂
∂y2

∂
∂y1

0 0 0

0 ∂
∂y2

0 0 0

∂
∂y3

0 ∂
∂y1

0 0

0 ∂
∂y2

∂
∂y3

0 0

0 0 ∂
∂y3

0 0

0 0 0 � ∂
∂y1

0

0 0 0 � ∂
∂y2

0

0 0 0 � ∂
∂y3

0

0 0 0 0 � ∂
∂y1

0 0 0 0 � ∂
∂y2

0 0 0 0 � ∂
∂y3

2
66666666666666666666666666666666666666664

3
77777777777777777777777777777777777777775

χ1
χ2
χ3
ζe

ζm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

� Гhχ ð46Þ

where Гh is an operator matrix and χ is a column matrix contain-
ing the components of the fluctuation functions. If we discretize χ
using the finite elements as

χ xi; yi
� �¼ S yi

� �
X xið Þ ð47Þ

where S representing the shape functions (in assemble sense
excluding the constrained node and slave nodes) and X column
matrix of the nodal value of the fluctuation functions for all active
nodes. Substituting Eqs. (46) and (47) into Eq. (45), we obtain a
discretized version of the functional as

ΠΩ ¼ 1
2Ω

 
XTEXþ2XTDhεΔYþΔY

T
DεεΔYþ2XTDhθΔθ tð Þ

þ2ΔY
T
DεθΔθ tð Þþ2XTDhcþ2ΔY

T
DεCþDψψΔθ tð Þ

þDθθ
Δθ tð Þ2
T0

þDCC

!
ð48Þ
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where

E¼
Z
Ω
ГhSð ÞTR ГhSð ÞdΩ Dhε ¼

Z
Ω
ГhSð ÞTRdΩ

Dεε ¼
Z
Ω
RdΩ Dhθ ¼

Z
Ω
ГhSð ÞTηdΩ

Dεθ ¼
Z
Ω
ηdΩ DhC ¼

Z
Ω
ГhSð ÞTЖdΩ

Dψψ ¼
Z
Ω
GdΩ DεC ¼

Z
Ω
ЖdΩ

Dθθ ¼
Z
Ω
cvdΩ DCC ¼

Z
Ω
hvdΩ ð49Þ

Minimizing ΠΩ in Eq. (48), we obtain the following linear
system:

EX ¼ �DhεΔY �DhθΔθ�DhC ð50Þ
The fluctuation function X is linearly proportional to ΔY and Δθ,

which means the solution can be written as

X ¼ χ 0ΔYþχ θΔθþχ C ð51Þ
Substituting Eq. (51) into Eq. (48), we can calculate the free

energy density of the UC as

ΠΩ ¼ 1
2
ΔY

T
RnΔYþΔY

T
ηnΔθ tð ÞþΔY

T
Жnþ1

2
GnΔθ tð Þþ1

2
cnv
Δθ tð Þ2
T0

þ1
2
hn

v

ð52Þ
with

Rn ¼ 1
Ω

χT0DhεþDεε

� �
ηn ¼ 1

Ω

1
2

DT
hεχ θþχ T0Dhθ

	 

þDεθ

� �

Жn ¼ 1
Ω

1
2

DT
hεχ Cþχ T0DhC

	 

þDεC

� �

Gn ¼ 1
Ω

χ TCDhθþχ TθDhCþDψψ

� �
cnv ¼

1
Ω

χ TθDhθT0þDθθ

� �
hn

v ¼
1
Ω

χ TCDhCþDCC
� � ð53Þ

where R* is a 12�12 effective material matrix containing instan-
taneous multiphysics material properties; ηn is a 12�1 effective
matrix containing the effective instantaneous second order ther-
mal stress tensor βn

ij, the effective pyroelectric vector pn

i and the
effective pyromagnetic vector mn

i ; Жnis a 12�1 effective matrix
containing the effective instantaneous second order tensor ωn

ij, the
effective vector ϖn

i and the effective vector Ψ n

i .
After having uniquely determined the fluctuation functions, we

can recover the local displacement, electric potential, and mag-
netic potential as

Δu1

Δu2

Δu3

Δ∅e

Δ∅m

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

Δv1
Δv2
Δv3
Δφe

Δφm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ

∂Δv1
∂x1

∂Δv1
∂x2

∂Δv1
∂x3

∂Δv2
∂x1

∂Δv2
∂x2

∂Δv2
∂x3

∂Δv3
∂x1
∂Δφe

∂x1
∂Δφm

∂x1

∂Δv3
∂x2
∂Δφe

∂x2
∂Δφm

∂x2

∂Δv3
∂x3
∂Δφe

∂x3
∂Δφm

∂x3

2
66666666664

3
77777777775

y1
y2
y3

8><
>:

9>=
>;þSX̂

ð54Þ
where S is different from S and X̂ is different from X due to the
recovery of slave nodes and the constrained node. The increments
of the local strain field, local electrical field, and local magnetic
field can be recovered as

ΔY ¼ΔYþΓhSX̂ ð55Þ

Finally, the increments of the increments of the local stress
field, electrical displacement field, and magnetic flux density can
be recovered straightforwardly using the 3D constitutive relations
for the constituent material as

ΔX ¼ RΔYþηΔθðtÞþЖ ð56Þ

The simulations of the time-dependent and non-linear thermo-
electro-magneto-viscoelastic-plastic response of smart composites
are performed using an incremental procedure based on Eq. (19).
Once the Rn, ηn, and Жn have been determined at the current
mechanical loading, electrical charge, or magnetic charge, one can
determine the current values of variables from previous values and
increments according to

Xcurrent ¼ XpreviousþΔX ð57aÞ

Ycurrent ¼ YpreviousþΔY ð57bÞ

The simulations can be readily performed without applying
various boundary conditions as those are carried out using finite
element unit cell procedures.

4. Numerical examples

4.1. Material properties of constituents

Aluminum: The material properties of aluminum are presented
in Table 1. The mechanical behavior of the aluminum is described
using rate-independent elasto-plastic model expressed in Eqs. (10)
and (11). Isotropic linear hardening is assumed for the aluminum.

Piezoelectric and Piezomagnetic material: Table 2 presents the
material properties of piezoelectric material (BaTiO3) and piezo-
magnetic material (CoFe2O4).

Polymer: The polymer is assumed to be isotropic and linear vis-
coelastic materials. The elastic relaxation modulus of the polymer

Table 1
Material properties of aluminum core.

Young's
modulus E
(MPa)

Poisson's
ratio ν

Yielding
strength σY
(MPa)

Hardening
modulus ET
(MPa)

CTE α (1/
1C)

Dielectric
coefficient k
(C/V m)

70,000 0.33 10 1170 23.0�10�6 0.1�10�9

Table 2
Material properties of the composite constituents (BaTiO3 and CoFe2O4) [14,15].

BaTiO3 (piezoelectric) CoFe2O4 (piezomagnetic)

C11 (GPa) 162 269.5
C12 (GPa) 78 170
C23 (GPa) 77 173
C22 (GPa) 166 286
C55 (GPa) 43 45.3
k11 (C/V m) 12.6�10�9 0.093�10�9

k33 (C/V m) 11.2�10�9 0.08�10�9

μ11 (N s2/C2) 0.1�10�4 1.57�10�4

μ33(N s2/C2) 0.05�10�4 �5.9�10�4

e11 (C/m2) 18.6 0
e21 (C/m2) �4.4 0
e51 (C/m2) 11.6 0
q11 (N/A m) 0 699.7
q21 (N/A m) 0 580.3
q51 (N/A m) 0 550
α11 (1/1C) 6.4�10�6 10�10�6

α22 (1/1C) 15.7�10�6 10�10�6

α33 (1/1C) 15.7�10�6 10�10�6
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can be expressed using Prony series as

E tð Þ ¼ E0 1�
Xn
k ¼ 1

gk 1�e� t=τk
	 
 !

ð58Þ

where E0 is the instantaneous Young's modulus; gk is dimension-
less modulus and τk is the time relaxation material parameter. For
simplicity, we considered a special case, namely, n¼ 1, g1 ¼ 0:5;
and τ1 ¼ 30, such that Eq. (58) is reduced to

E tð Þ ¼ 0:5E0 1þe� t=ρ
	 


¼ AþBe� t=ρ ð59Þ

where E0 ¼ 8000 MPa and ρ¼ 30, then A¼ B¼ 4000 MPa. The
dielectric coefficient and magnetic permeability of the polymer
are assumed to be constant and assigned as k¼ 0:1�
10�9 C=ðVmÞ and m¼ 0:01� 10�4 Ns2=C2, respectively. The ther-
mal expansion of the polymer material are kept constant as
α¼ 54� 10�6 1C�1.

The time-scale shift factor aT in Eq. (3) is determined by emp-
irical relationship of Williams–Landel–Ferry (WLF) [19],

log aT Tð Þ ¼ � C1 T�T0ð Þ
C2þ T�T0ð Þ ð60Þ

where C1 and C2 are material constants determined through least
squares fitting. In this example, the values of C1 and C2 are set as
C1 ¼ 4:92 and C2 ¼ 215:0.

T0 in Eq. (60) is the reference temperature and the temperature
T at time t is given by

T ¼ T0þθ¼ T0þC0t ð61Þ
where C0 is the temperature change rate.

Therefore, the reduced time ξ tþΔtð Þ, ξ tð Þ, and ξ τð Þ are given by

ξ tþΔtð Þ ¼
Z tþΔt

0
10

C1C0 t
0

C2 þ C0 t
0dt0

ξ tð Þ ¼
Z t

0
10

C1C0 t
0

C2 þ C0 t
0dt0

ξ τð Þ ¼
Z τ

0
10

C1C0 t
0

C2 þ C0 t
0dt0 ð62Þ

The stress relaxation stiffness matrix LijklðtÞ
� �

in Eq. (7a) is obt-
ained as

Lijkl tð Þ
� �¼ f f W½ � ð63Þ
where the coefficient ff is computed using Simpson's rule of num-
erical integration as

f f ¼ t
6
f Lþ4fmþ f uð Þ ð64Þ

where

f L¼ AþBe
�
ξ tþΔtð Þ�ξ tð Þ

ρ

f u¼ AþB

fm¼ AþBe
�
ξ tþΔtð Þ�ξ t=2

� �
ρ

The matrix[W] in Eq. (63) is given by

W½ � ¼ 1
1þνð Þ 1�2νð Þ

1�ν ν ν

ν 1�ν ν

ν ν 1�ν

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1�2νð Þ=2 0 0
0 1�2νð Þ=2 0
0 0 1�2νð Þ=2

2
6666666664

3
7777777775

ð65Þ
with ν being the Poisson's ratio of the polymer, which is assumed
to be constant ν¼ 0:4.

The matrix γijðtÞ
� �

in Eq. (7a) is obtained as

γijðtÞ
� �¼ Lijkl tð Þ

� �
αf g ð66Þ

where αf g is a column matrix containing thermal expansion coe-
fficients of the polymer materials.

The coefficient matrix of ωij tð Þ in Eq. (7a) is calculated as

ωij tð Þ
� �¼ B

Δt

Xn
i ¼ 1

R iΔt
i�1ð ÞΔt e� tþΔt� τð Þ=ρ�e� t� τð Þ=ρ� �

W½ �dτ
	 


Δε ið Þ½ �



þ
Z iΔt

i�1ð ÞΔt
e� tþΔt� τð Þ=ρ�e� t� τð Þ=ρ
	 


W½ �dτ
 !

αf gΔθ ið Þ
)

ð67Þ
where Δε ið Þ½ � is 6�1 column matrix containing strain increments
during the ith time step Δt; Δθ ið Þ are the increment of temperature
change during the ith time step Δt; and n¼ t=Δt.

4.2. Model verification

Let us firstly calculate the stress–strain hysteresis loop of the
polymer matrix using VAMUCH and ABAQUS. The polymer was
simultaneously applied with cyclic stress loading and various
temperature changes as shown in Fig. 2. The temperature changes
increase linearly and uniformly up to 20 1C, 40 1C, 60 1C, and 80 1C,
respectively. The corresponding responses of the polymer are
illustrated in Fig. 3 in which the stress–strain hysteresis loop of
the polymer without thermal effects is also plotted for the sake of
comparison. Since the VAMUCH predictions are identical to
ABAQUS results, only VAMUCH results are illustrated in Fig. 3
from which one can see that the finally remained strains increase
as the temperature changes increase after reverse unloading.
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Fig. 2. (a) Cyclic stress loading and (b) temperature changes increase linearly and
uniformly up to 20 1C, 40 1C, 60 1C, and 80 1C, respectively, during cyclic stress
loading.
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Let us consider an aluminum fiber reinforced polymer matrix
composites with the volume fraction of aluminum fiber being
vof¼0.4. The aluminum fiber is of circular shape and in square
array. The composite is simultaneously applied with the cyclic
stress loading (along fiber direction and transverse direction, res-
pectively) and various temperature changes as shown in Fig. 2. The
stress–strain hysteresis curves of aluminum fiber polymer matrix
composite due to axial and transverse cyclic loadings coupled with
temperature change are plotted in Fig.4 from

which one can observe that there are excellent agreements
between the predictions of VAMUCH and ABAQUS.

Next consider a piezoelectric (BaTiO3) fiber reinforced alumi-
num matrix composite with the volume fraction of BaTiO3 fiber
being vof¼0.4. The composite was simultaneously applied with
temperature changes shown in Fig. 2(b) and electrical field E1
along the fiber direction. Fig. 5 shows the variation of the effective
induced axial strain ε11 of traction-free piezoelectric (BaTiO3) fiber
reinforced aluminum matrix composite with the applied electrical
field E1 at various temperature changes. It can be seen that
VAMUCH and ABAQUS provide identical predictions. VAMUCH
can also accurately recover the local fields based on the global
responses and the recovery relations obtained from the micro-
mechanics analysis. Fig. 6 illustrates the contour plot of local stress
component σ22 (predicted by VAMUCH) and the comparison of the
distributions of σ22 along the y2 axis predicted by VAMUCH and
ABAQUS. The results were calculated when the electrical field E1
and temperature change increased up to 1.96 MV/m and 60 1C,
respectively. One can see from Fig. 6 that the recovery capability of
VAMUCH is validated by ABAQUS results.

4.3. Effective responses of aluminum core piezoelectric and
piezomagnetic fiber (APPF) composites

In this section, the effective responses of aluminum core piezo-
electric and piezomagnetic fiber (APPF) reinforced polymer matrix
composite whose microstructure is shown in Fig. 7 were investigated
using VAMUCH. The volume fractions of polymer matrix, aluminum
core, and piezoelectric material are 0.55, 0.3, and 0.05, respectively.

We firstly considered the effects of strain rates on the uniaxial
tension behavior. Fig. 8 presents the effective uniaxial tension
stress–strain curves of APPF reinforced polymer matrix composite
at various strain rates while all electrical fields and magnetic fields
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are kept zero. Obviously, the tension behaviors of the composite
are rate dependent due to the time dependent behavior of the
polymer matrix while the influences of strain rates are more
pronounced on the transverse tension than on axial tension.

Let us consider the thermal induced axial stress σ11 of APPF
polymer matrix composites when all mechanical strains, electric
fields, and magnetic fields are kept as zero. This is shown in Fig. 9,
which demonstrates that the magnitude of induced axial stress
increases with the increase of the temperature change rate. The
variation of slope of the curve of induced stress σ11 vs tempera-
ture change is due to the modulus relaxation of the polymer
matrix.

When all mechanical strains are equal to zero, the induced axial
stresses σ11 of APPF polymer matrix composites are generated by
axial electric field E1 and axial magnetic field H1 are presented in
Figs. 10 and 11, respectively. It can be seen that the rate of E1 and
H1 do not have significant influences on the induced longitudinal
overall stress σ11 .

The deformation of smart composites induced by electric input
can be utilized for sensoring applications. Figs. 12 and 13 illustrate
such responses of traction free APPF reinforce polymer matrix
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composites. These two figures also clearly illustrate that the
yielding of aluminum core causes the change of the slope of the
lines of ε11 vs E1 and ε11 vs H1 when the axial electrical field E1 and
axial magnetic field H1 increased up to certain values.

5. Conclusions

We have developed a general-purpose micromechanical model
that is capable of predicting the fully coupled thermo-electro-mag-
neto-viscoelastic-plastic response of smart composites. In view of the
time dependent characteristics and non-linearity of the composite,
instantaneous tangential electro-magneto-mechanical matrices asso-
ciated with an incremental procedure were established. The proposed
model can efficiently capture the rate-dependent and non-linear
behavior of multiphase smart composite consisting of linear viscoe-
lastic materials, piezoelectric materials, piezomagnetic materials, and
metallic phases.
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