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1. Problem Statement
In this study, a finite element unit cell model was developed on the basis of ABAQUS to predict

the effective thermo-mechanical properties of a fiber composite having three-phase interphase
microstructure as shown in Fig. 1 in which the fiber is of circular and in a square array with a thin
layer of interphase between the fiber and the matrix. The volume fractions of the fiber and

interphase are 60% and 1%, respectively. The material properties of the constituents are presented

in Table 1. Note that the fiber properties are orthotropic, despite

the fact that all three Young’s moduli and all three Poisson’s

ratios have been chosen to be the same. The materials of the
matrix and interphase are isotropic. Finally, the local stresses
within the unit cell were computed according to the prescribed

macroscopic loadings. This report describes the detailed

methodology used to obtain the effective properties and local
fields using ABAQUS unit cell model.

Fig. 1. Circular fiber and interphase
between the fiber and the matrix.
2. Homogenization

The process of obtaining the effective properties of the composites is called homogenization. A
variety of boundary and loading conditions and multiple

. . . ) Table 1. Material properties of constituents
run are required in order to obtain the full set effective

) ) ] . o Properties | Matrix | Fiber | Interphase
properties and different local fields using ABAQUS finite
_ E (GPa) 350 | 450 5.0
element unit cell model.
) 0.18 0.17 0.22
G (GPa) 148 171 2.0
2.1 Periodic boundary conditions and effective properties i
. . . a1 (o_) 64.8 -0.4 5.0
The composites can be idealized as assembly of many C
periodic unit cells to which the periodic boundary ayo (%) 64.8 5.6 5.0
conditions are consequently applied, which means that the 7
33 () 648 | 56 5.0
deformation mode in each unit cell are identical and there




is no gap or overlap between the adjacent unit cells. The periodic boundary conditions are
represented as
u; = &;x; +v; (D
where &;; is the average strain; v; is the periodic part of the displacement components also called
local fluctuation on the boundary surfaces. The displacements on a pair of opposite boundary
surfaces are given by
uft =gt + vl (2)
uk~ = e_ijx}‘_ + vk 3)
where “k +” denotes along the positive x; direction while “k —” means along the negative x;
direction. Since the periodic parts v¥* and v¥~ are identical on the two opposite boundary surfaces
of a periodic unit cell, the difference of Eq. (2) and (3) is obtained as
uft —uk- = e‘ij(x}‘+ — x}‘_) = &;Ax; (4)
where Ax; is actually the edge length of the unit cell.
Basically, ABAQUS unite cell modeling technique employs volume averaging process which
means that the effective thermo-mechanical properties are linearly proportional to volume average
stresses and strains of a unit cell and expressed as
0ij = Cijrii + Cijraai;0 (5)
where Cjj, is effective elastic stiffness; a;; is the effective thermal expansion coefficient; 6 is the

temperature deviation; and the average stresses g;; and average strains &, are defined as
_ 1
O—ij =5Jﬂ O-ij dn (6)

1
Eij =5Jﬂ gij dn (7)

with Q being the volume of a periodic unit cell.

2.2 Finite element modeling

The periodic boundary conditions described in Eq. (4) are implemented into a python script. As
shown in Fig. 2, the finite element unit cell model was meshed using 20 node brick element
C3D20R. The fiber direction is along -1. Sweep mesh technique was used in order to obtain

periodic mesh on opposite boundary surfaces, which means that the meshes on opposite boundary



surfaces are identical. The periodic boundary conditions described in Eq. (4) were applied to the
unit cell by coupling opposite nodes on corresponding opposite boundary surfaces. In actual
manipulation, three reference points are first created and their displacements are assigned as
&jAx;. In the present study, the edge length of the unit cell along 1, 2, and 3 direction are

respectively Ax; = 0.1 mm and Ax, = Ax; = 1 mm.

2.3 Numerical calculation of various effective thermo-mechanical properties

2.3.1 Calculation of Ej;, vi,, and v,
In the case of calculation of E,;, v, and v,3, the symmetric
boundary conditions are imposed on 1-3, 2-3, and 1-2 planes,
respectively, in order to eliminate rigid body rotation. The
macroscopic strain &, along 1 direction was applied by
prescribing the 1 direction displacement of the corresponding
reference point. Since the 1 direction displacement of plane 2-3
is zero, the periodic boundary condition along -1 direction can be
simplified as

ut = &,4% (8)

There are two ways to calculate the average stress a,; generated

by the imposed boundary and loading conditions. One way is to ~ Fig- 2 Finite element unit cell

_ ) ) model and coordinate system.
write a python script to obtain the stress and volume of each
element and then the effective properties are equal to the summation of stress in each element
divided by the total volume of the unit cell. Another simple but efficient way is to first obtain the
summation of 1 component reaction force (RF;) acting on the front boundary surface which is
actual the 1 component of the reaction force of the corresponding reference point and can be

obtained using the History Output as shown in Fig. 3. The average stress a;, is equal to 7;; =

RFl/A1+ with A'* being the area of the front boundary surface along 1 direction. The effective

Young’s modulus E7; is consequently computed as

E* = (9)
11 €11

For instance, the &, is 0.01 and A" = 1mm? in this study. The resultant RF; is 4.06557 N as
shown in Fig. 3 such that E; = 406.557 GPa.



-

— History Output

Varizbles | Steps/Frames

&= Edit XY Data

Mame: XYData-1

Output Variables
Mame filter: :Q:

Reaction force: RFL PL: REFPOINT-3-1 Mode 1 in NSET SETREFPOINT3
Reaction force: RF2 PL REFPOINT-3-1 Mode 1 in NSET SETREFPOINT3
Reaction force: RF3 PI: REFPOINT-

Mode 1 in NSET SETREFPOINT3

Spatial displacement: U1 PL: PART-1-1 Node 38 in NSET CORMERMODE
Spatial displacement: U2 PL: PART-1-1 Node 38 in NSET CORMERNODE
Spatial displacement: U3 PL: PART-1-1 Node 38 in NSET CORMERMNODE

X Y
1 ] -0
2 1 4.06557
3
4
5
6 RF,
7
8
9
10

‘o’

Quantity Types
X | Time

EI ¥: | Force EI

Fig. 3 The -1 component reaction force (RF;) acting on the front boundary surface is actually the
reaction force of the correspondina reference point.

& Query

General Queries

Distance

Angle

Mesh

Element

Mass properties

Visualization Module Queries

Probe values
Stress linearization
Active elements
Active nodes

Ply stack plot

1: Slep Time =  1.00D
. Magei,
0 Belaimatian Scak Facior: +8,014e 401

_Displacement {unscaleﬂ}:

e e
7777 AT
2 e e

AL

Corner node

N
N
N

777
7771777777
777177777

2177777
2277

5
&
2,

717771

;,
24
o
Sl

.
S5
<

:44: 21 Eastern Daylgnt Time 2016

250055
(]
2sn ey

1777
(77

Uz

) U,
—-1.74580=e-003.

) Uq
—-1.74580=-003.

1. 00000e-003,

Fig. 4 Contour plot of displacement and the displacement of corner node.
The vy, and v are determined by tracking the displacement of corner node as shown in Fig. 4. In

the present case, vy, = — 22 — 0.17458 and Vi3 = V7,.
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2.3.2 Calculation of E;,, and v;5

The symmetric boundary conditions are also needed to impose on 1-3, 2-3, and 1-2 planes,
respectively, in order to eliminate rigid body rotation. The macroscopic strain &,, along -2
direction was applied by assigning the -2 direction displacement of the corresponding reference
point. Since the -2 direction displacement of plane 1-3 is zero, the periodic boundary condition
along -1 direction can be simplified as

uit = &,0x, (10)

The average stress a,, iIs equal to 7,, = RFZ/IL12+ with A%* being the area of the right side

boundary surface in 2 direction. The effective Young’s modulus E;, is accordingly computed as
E;, =— (11)

For instance, the &,, is 0.01 and A%* = 0.1mm? in this study. The resultant RF, is 0.27684 N as
shown in Fig. 5 such that E5, = 276.84 GPa.
The v3; is determined according to the displacements of corner node which are u, =

—0.00203529 mm and u; = 0.001 mm such that the transverse Poisson’s ratio is calculated as

U3, = — 22 = 0.203529.
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Fig. 5 The -2 component reaction force (RF,) acting on the side boundary surface is actually the
reaction force of the corresponding reference point.
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Fig. 6 The second component of the total reaction force (RF,) acting on the top boundary surface.

2.3.3 Calculation of G35
The boundary conditions for the calculation of G5 are set in such a way that all mechanical strains
except &,5 are set to zero. The macroscopic transverse shear strain &,;=&;, are applied in the
following way

wit —udT = &3Ax; and  uit —ult = &,Ax, (12)
where the engineering shear strain is applied as y,; = 2&,; = 0.02. The average transverse shear

stress g, is calculated as

__REFR
023 = 23+ (13)

Where A3+ is the area of the top boundary surface and equal to 0.1 mm?; RF, is 2 component of

total reaction force acting on A3* and equal to 0.231373 N as shown in Fig. 6. Finally, G;5 is

equal to G35 = 523/]723 —115.6865 GPa.



2.3.3 Calculation of G;, and G;5
Since the fiber is in square array, the two longitudinal shear moduli are identical, namely, G;, =

G15. In order to compute G;, or G;3, the only non-zero macroscopic longitudinal shear strain y;,
is imposed as

uit —u?- =¢g,Ax, and uit—ul=45,Ax, (14)
where the engineering shear strain is prescribed as y,, = 2&;, = 0.02. The average transverse
shear stress a;, is calculated as

_ _RR
012 = 3% (13)

where A%* is the area of the right side boundary surface and equal to 0.1 mm?; RF; is 1 component

of total reaction force acting on A%* and equal to 0.235161 N as shown in Fig. 7. Finally, G;, is

equal to G, = 512/]712 —117.5805 GPa.
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Fig. 7 The first component of the total reaction force (RF;) acting on the right side boundary surface.



2.3.4 Calculation of thermal expansion coefficients

To evaluate the thermal expansion coefficients, the symmetric boundary conditions are also needed
to impose on 1-3, 2-3, and 1-2 planes, respectively, as shown in Fig. 2. All other surfaces are free
to move but kept as plane during deformation. The temperature deviation of the unit cell is
uniformly increased by 68 = 1°C. The effective coefficients of thermal expansion can be obtained
by tracking the displacement of corner node as shown in Fig. 8. In this case, the displacement
components of the corner node are respectively u;=2.1616e-6 mm and u,=u;=3.20871e-5 mm

such that the effective coefficients of thermal expansion are calculated as

Uuq

0(11 = Ax19 =21616€-6
gt o Y2 U3 _ )
@5 = @3y = 5ty = 125=32.0871e-6

Corner node

, , Usz Uy Up
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Fig. 8 Contour plot of displacement of unit cell due to thermal expansion and the displacement of the
corner node.

Table 2 Effective thermo-mechanical properties predicted by ABAQUS and SwiftComp.

Eik1 Eékz = Eékz sz = Gf3 653 * ook *
Model (GPa) (GPa) (GPa) (GPa) |V1z2=Vis| Vs
ABAQUS | 406557 | 276.84 | 117.58 | 115.6865 | 0.17458 | 0.203529

SwiftComp | 406.557 276.84 117.58 115.6885 | 0.17458 | 0.203528

*

Model aqq (zp = 33
(1/°C) (1/°0)
ABAQUS 21.616 32.0871

SwiftComp | 21.616 32.0868
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Fig. 9 Contour plot of a;4 of the unit cell subjected to &, = 0.01 while all other macroscopic strains

are zero.
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We also predicted these effective properties using SwiftComp. For comparison the predictions of

ABAQUS and SwiftComp are listed in Table 2 together. Obviously, both approaches provide

almost identical results.

3. Dehomogenization

Dehomogenization is also called
localization which is the method
used to recover the distribution of
local fields according to different
applied  macroscopic  loadings.
Finite element unit cell model need
to recalculate the local fields based
on the prescribed macroscopic
loading. Fig. 9 shows the contour

plot of stress oy, of the unit cell
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Fig. 10 The distribution of stress component g, along the center

line X, predicted by ABAQUS and SwiftComp when the only non-

Zero macroscopic strain is &, = 0.01.




subjected to &, = 0.01 while all other macroscopic strains are zero. The detailed stress
distributions of o;, along the center line X, as shown in Fig. 9 calculated by ABAQUS and
SwiftComp are plotted in Fig. 10 together. Furthermore, the distributions of stress components o5,
and o35 are plotted in Fig. 11 (a-b) when the unit cell is subjected to macroscopic strain &, = 0.01
which is the only non-zero strain. Fig. 12 presents the distribution of stress components a5 which
the unit cell is subjected to &, = &3 = 0.01. One can observe from Fig. 10-12 that the predictions

provided by both approaches have excellent agreement.
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Fig. 11 The distribution of stress component (a) a,,, and (b) a3 along the center line X,
calculated by ABAQUS and SwiftComp when the unite cell is subjected to macroscopic strain is
&, = 0.01 while other mechanical strains are zero.
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Fig. 12 The distribution of stress component o35 along the center line X, predicted
by ABAQUS and SwiftComp when the unit cell was simultaneously applied by the
macroscopic strains &, = &3 = 0.01.



