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1. Problem Statement 

In this study, a finite element unit cell model was developed on the basis of ABAQUS to predict 

the effective thermo-mechanical properties of a fiber composite having three-phase interphase 

microstructure as shown in Fig. 1 in which the fiber is of circular and in a square array with a thin 

layer of interphase between the fiber and the matrix. The volume fractions of the fiber and 

interphase are 60% and 1%, respectively. The material properties of the constituents are presented 

in Table 1. Note that the fiber properties are orthotropic, despite 

the fact that all three Young’s moduli and all three Poisson’s 

ratios have been chosen to be the same. The materials of the 

matrix and interphase are isotropic. Finally, the local stresses 

within the unit cell were computed according to the prescribed 

macroscopic loadings. This report describes the detailed 

methodology used to obtain the effective properties and local 

fields using ABAQUS unit cell model.  

 

2. Homogenization 

The process of obtaining the effective properties of the composites is called homogenization. A 

variety of boundary and loading conditions and multiple 

run are required in order to obtain the full set effective 

properties and different local fields using ABAQUS finite 

element unit cell model. 

 

2.1 Periodic boundary conditions and effective properties 

The composites can be idealized as assembly of many 

periodic unit cells to which the periodic boundary 

conditions are consequently applied, which means that the 

deformation mode in each unit cell are identical and there 

Table 1. Material properties of constituents 

Properties Matrix Fiber Interphase 

𝐸 (GPa) 350 450 5.0 

υ 0.18 0.17 0.22 

𝐺 (GPa) 148 171 2.0 

𝛼11 (
𝜇

℃
) 64.8 -0.4 5.0 

𝛼22 (
𝜇

℃
) 64.8 5.6 5.0 

𝛼33 (
𝜇

℃
) 64.8 5.6 5.0 

 

 
Fig. 1. Circular fiber and interphase 

between the fiber and the matrix. 



is no gap or overlap between the adjacent unit cells. The periodic boundary conditions are 

represented as  

𝑢𝑖 = 𝜀𝑖̅𝑗𝑥𝑗 + 𝑣𝑖                                                                                (1) 

where 𝜀𝑖̅𝑗 is the average strain; 𝑣𝑖 is the periodic part of the displacement components also called 

local fluctuation on the boundary surfaces. The displacements on a pair of opposite boundary 

surfaces are given by 

𝑢𝑖
𝑘+ = 𝜀𝑖̅𝑗𝑥𝑗

𝑘+ + 𝑣𝑖
𝑘+                                                                       (2) 

𝑢𝑖
𝑘− = 𝜀𝑖̅𝑗𝑥𝑗

𝑘− + 𝑣𝑖
𝑘−                                                                      (3) 

where “𝑘 +” denotes along the positive 𝑥𝑗 direction while “𝑘 −” means along the negative 𝑥𝑗 

direction. Since the periodic parts 𝑣𝑖
𝑘+ and 𝑣𝑖

𝑘− are identical on the two opposite boundary surfaces 

of a periodic unit cell, the difference of Eq. (2) and (3) is obtained as 

𝑢𝑖
𝑘+ − 𝑢𝑖

𝑘− = 𝜀𝑖̅𝑗(𝑥𝑗
𝑘+ − 𝑥𝑗

𝑘−) = 𝜀𝑖̅𝑗∆𝑥𝑗                                            (4) 

where ∆𝑥𝑗 is actually the edge length of the unit cell.  

Basically, ABAQUS unite cell modeling technique employs volume averaging process which 

means that the effective thermo-mechanical properties are linearly proportional to volume average 

stresses and strains of a unit cell and expressed as 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
∗ 𝜀𝑘̅𝑙 + 𝐶𝑖𝑗𝑘𝑙

∗ 𝛼𝑖𝑗
∗ 𝜃                                                            (5) 

where 𝐶𝑖𝑗𝑘𝑙
∗  is effective elastic stiffness; 𝛼𝑖𝑗

∗  is the effective thermal expansion coefficient; 𝜃 is the 

temperature deviation; and  the average stresses 𝜎𝑖𝑗 and average strains 𝜀𝑘̅𝑙 are defined as 

𝜎𝑖𝑗 =
1

𝛺
∫ 𝜎𝑖𝑗

𝛺

d𝛺                                                                    (6) 

𝜀𝑖̅𝑗 =
1

𝛺
∫ 𝜀𝑖𝑗

𝛺

d𝛺                                                                    (7) 

with Ω being the volume of a periodic unit cell. 

 

2.2 Finite element modeling 

The periodic boundary conditions described in Eq. (4) are implemented into a python script.  As 

shown in Fig. 2, the finite element unit cell model was meshed using 20 node brick element 

C3D20R.  The fiber direction is along -1. Sweep mesh technique was used in order to obtain 

periodic mesh on opposite boundary surfaces, which means that the meshes on opposite boundary 



surfaces are identical. The periodic boundary conditions described in Eq. (4) were applied to the 

unit cell by coupling opposite nodes on corresponding opposite boundary surfaces. In actual 

manipulation, three reference points are first created and their displacements are assigned as 

𝜀𝑖̅𝑗∆𝑥𝑗. In the present study, the edge length of the unit cell along 1, 2, and 3 direction are 

respectively ∆𝑥1 = 0.1 mm and ∆𝑥2 = ∆𝑥3 = 1 mm. 

 

2.3 Numerical calculation of various effective thermo-mechanical properties 

2.3.1 Calculation of  𝐸11
∗ , 𝜐12

∗ , and 𝜐13
∗  

In the case of calculation of 𝐸11, 𝜐12, and 𝜐13, the symmetric 

boundary conditions are imposed on 1-3, 2-3, and 1-2 planes, 

respectively, in order to eliminate rigid body rotation. The 

macroscopic strain 𝜀1̅1 along 1 direction was applied by 

prescribing the 1 direction displacement of the corresponding 

reference point. Since the 1 direction displacement of plane 2-3 

is zero, the periodic boundary condition along -1 direction can be 

simplified as 

𝑢1
1+ = 𝜀1̅1∆𝑥1                                            (8) 

There are two ways to calculate the average stress 𝜎11 generated 

by the imposed boundary and loading conditions. One way is to 

write a python script to obtain the stress and volume of each 

element and then the effective properties are equal to the summation of stress in each element 

divided by the total volume of the unit cell. Another simple but efficient way is to first obtain the 

summation of 1 component reaction force (𝑅𝐹1) acting on the front boundary surface which is 

actual the 1 component of the reaction force of the corresponding reference point and can be 

obtained using the History Output as shown in Fig. 3.  The average stress 𝜎11 is equal to 𝜎11 =

𝑅𝐹1
𝐴1+⁄  with 𝐴1+ being the area of the front boundary surface along 1 direction. The effective 

Young’s modulus 𝐸11
∗  is consequently computed as 

𝐸11
∗ =

𝜎11

𝜀1̅1
                                                                      (9) 

For instance, the 𝜀1̅1 is 0.01 and  𝐴1+ = 1mm2 in this study. The resultant 𝑅𝐹1 is 4.06557 N as 

shown in Fig. 3 such that 𝐸11
∗ = 406.557 GPa.  

 

 
Fig. 2 Finite element unit cell 

model and coordinate system. 

1 

2 
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The 𝜐12
∗  and 𝜐13

∗  are determined by tracking the displacement of corner node as shown in Fig. 4. In 

the present case, 𝜐12
∗ = −

𝜀̅22

𝜀̅11
= 0.17458 and 𝜐13

∗ = 𝜐12
∗ . 

 
Fig. 3 The -1 component reaction force (𝑅𝐹1) acting on the front boundary surface is actually the 

reaction force of the corresponding reference point. 

𝑅𝐹1 

 
 

                                                                                       𝑢3                          𝑢2                          𝑢1 

 
 

Fig. 4 Contour plot of displacement and the displacement of corner node. 

Corner node 



2.3.2 Calculation of  𝐸22
∗ , and 𝜐23

∗  

The symmetric boundary conditions are also needed to impose on 1-3, 2-3, and 1-2 planes, 

respectively, in order to eliminate rigid body rotation. The macroscopic strain 𝜀2̅2 along -2 

direction was applied by assigning the -2 direction displacement of the corresponding reference 

point. Since the -2 direction displacement of plane 1-3 is zero, the periodic boundary condition 

along -1 direction can be simplified as 

𝑢2
2+ = 𝜀2̅2∆𝑥2                                                                     (10) 

The average stress 𝜎22 is equal to 𝜎22 =
𝑅𝐹2

𝐴2+⁄  with 𝐴2+ being the area of the right side 

boundary surface in 2 direction. The effective Young’s modulus 𝐸22
∗  is accordingly computed as  

𝐸22
∗ =

𝜎22

𝜀2̅2
                                                                         (11) 

For instance, the 𝜀2̅2 is 0.01 and  𝐴2+ = 0.1mm2 in this study. The resultant 𝑅𝐹2 is 0.27684 N as 

shown in Fig. 5 such that 𝐸22
∗ = 276.84 GPa. 

The 𝜐23
∗  is determined according to the displacements of corner node which are 𝑢2 =

−0.00203529 mm and 𝑢3 = 0.001 mm such that the transverse Poisson’s ratio is calculated as 

𝜐23
∗ = −

𝜀̅33

𝜀̅22
= 0.203529. 

 

 
 

Fig. 5 The -2 component reaction force (𝑅𝐹2) acting on the side boundary surface is actually the 

reaction force of the corresponding reference point. 



 

2.3.3 Calculation of  𝐺23
∗  

The boundary conditions for the calculation of 𝐺23
∗  are set in such a way that all mechanical strains 

except 𝜀2̅3 are set to zero. The macroscopic transverse shear strain 𝜀2̅3=𝜀3̅2  are applied in the 

following way 

𝑢2
3+ − 𝑢2

3− = 𝜀2̅3∆𝑥3      and      𝑢3
2+ − 𝑢3

2− = 𝜀3̅2∆𝑥2                                 (12) 

where the engineering shear strain is applied as 𝛾̅23 = 2𝜀2̅3 = 0.02. The average transverse shear 

stress 𝜎23 is calculated as 

𝜎23 =
𝑅𝐹2

𝐴3+
                                                                       (13) 

Where 𝐴3+ is the area of the top boundary surface and equal to 0.1 mm2; 𝑅𝐹2 is 2 component of 

total reaction force acting on 𝐴3+ and equal to 0.231373 N as shown in Fig. 6.  Finally, 𝐺23
∗  is 

equal to 𝐺23
∗ =

𝜎23
𝛾̅23

⁄ =115.6865 GPa. 

 

 
Fig. 6 The second component of the total reaction force (𝑅𝐹2) acting on the top boundary surface. 

𝑅𝐹2 



2.3.3 Calculation of  𝐺12
∗  and 𝐺13

∗  

Since the fiber is in square array, the two longitudinal shear moduli are identical, namely, 𝐺12
∗ =

𝐺13
∗ . In order to compute 𝐺12

∗  or 𝐺13
∗ , the only non-zero macroscopic longitudinal shear strain 𝛾̅12 

is imposed as 

𝑢1
2+ − 𝑢1

2− = 𝜀1̅2∆𝑥2      and      𝑢2
1+ − 𝑢2

1− = 𝜀2̅1∆𝑥1                                 (14) 

where the engineering shear strain is prescribed as 𝛾̅12 = 2𝜀1̅2 = 0.02. The average transverse 

shear stress 𝜎12 is calculated as 

𝜎12 =
𝑅𝐹1

𝐴2+
                                                                       (13) 

where 𝐴2+ is the area of the right side boundary surface and equal to 0.1 mm2; 𝑅𝐹1 is 1 component 

of total reaction force acting on 𝐴2+ and equal to 0.235161 N as shown in Fig. 7.  Finally, 𝐺12
∗  is 

equal to 𝐺12
∗ =

𝜎12
𝛾̅12

⁄ =117.5805 GPa. 

 

 

 
Fig. 7 The first component of the total reaction force (𝑅𝐹1) acting on the right side boundary surface. 

𝑅𝐹1 



 2.3.4 Calculation of thermal expansion coefficients 

To evaluate the thermal expansion coefficients, the symmetric boundary conditions are also needed 

to impose on 1-3, 2-3, and 1-2 planes, respectively, as shown in Fig. 2. All other surfaces are free 

to move but kept as plane during deformation. The temperature deviation of the unit cell is 

uniformly increased by 𝜃 = 1℃. The effective coefficients of thermal expansion can be obtained 

by tracking the displacement of corner node as shown in Fig. 8. In this case, the displacement 

components of the corner node are respectively 𝑢1=2.1616e-6 mm and 𝑢2=𝑢3=3.20871e-5 mm 

such that the effective coefficients of thermal expansion are calculated as 

𝛼11
∗ =

𝑢1

∆𝑥1𝜃
=21.616e-6 

𝛼22
∗ = 𝛼33

∗ =
𝑢2

∆𝑥2𝜃
=

𝑢3

∆𝑥3𝜃
=32.0871e-6 

 

Table 2 Effective thermo-mechanical properties predicted by ABAQUS and SwiftComp. 

Model 
𝐸11

∗  
(GPa) 

𝐸22
∗ = 𝐸22

∗  
(GPa) 

𝐺12
∗ = 𝐺13

∗  

(GPa) 

𝐺23
∗  

(GPa) 
𝜐12

∗ = 𝜐13
∗  𝜐23

∗  

ABAQUS 406.557 276.84 117.58 115.6865 0.17458 0.203529 

SwiftComp 406.557 276.84 117.58 115.6885 0.17458 0.203528 

       

Model 
𝛼11

∗  

(𝜇/℃) 

𝛼22
∗ = 𝛼33

∗  

(𝜇/℃) 
    

ABAQUS 21.616 32.0871     

SwiftComp 21.616 32.0868     

 
 

Fig. 8 Contour plot of displacement of unit cell due to thermal expansion and the displacement of the 

corner node. 

 

                                                             𝑢3                  𝑢2                 𝑢1 

 
 

Corner node 



We also predicted these effective properties using SwiftComp. For comparison the predictions of 

ABAQUS and SwiftComp are listed in Table 2 together. Obviously, both approaches provide 

almost identical results. 

 

3. Dehomogenization 

Dehomogenization is also called 

localization which is the method 

used to recover the distribution of 

local fields according to different 

applied macroscopic loadings. 

Finite element unit cell model need 

to recalculate the local fields based 

on the prescribed macroscopic 

loading. Fig. 9 shows the contour 

plot of stress  𝜎11 of the unit cell 

 
 

Fig. 9 Contour plot of 𝜎11 of the unit cell subjected to 𝜀1̅1 = 0.01 while all other macroscopic strains 

are zero. 
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Fig. 10 The distribution of stress component 𝜎11 along the center 

line 𝑋2 predicted by ABAQUS and SwiftComp when the only non-

zero macroscopic strain is 𝜀1̅1 = 0.01. 
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subjected to 𝜀1̅1 = 0.01 while all other macroscopic strains are zero. The detailed stress 

distributions of 𝜎11 along the center line 𝑋2 as shown in Fig. 9 calculated by ABAQUS and 

SwiftComp are plotted in Fig. 10 together. Furthermore, the distributions of stress components 𝜎22 

and 𝜎33 are plotted in Fig. 11 (a-b) when the unit cell is subjected to macroscopic strain 𝜀2̅2 = 0.01 

which is the only non-zero strain. Fig. 12 presents the distribution of stress components 𝜎33 which 

the unit cell is subjected to 𝜀1̅1 = 𝜀1̅3 = 0.01. One can observe from Fig. 10-12 that the predictions 

provided by both approaches have excellent agreement. 

 (a) 

 (b) 

Fig. 11 The distribution of stress component (a) 𝜎22, and (b) 𝜎33 along the center line 𝑋2 

calculated by ABAQUS and SwiftComp when the unite cell is subjected to macroscopic strain is 

𝜀2̅2 = 0.01 while other mechanical strains are zero. 
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Fig. 12 The distribution of stress component 𝜎33 along the center line 𝑋2 predicted 

by ABAQUS and SwiftComp when the unit cell was simultaneously applied by the 

macroscopic strains 𝜀1̅1 = 𝜀1̅3 = 0.01. 
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