State of the Art of Rheology of Concentrated Suspensions

Gregory Lambert, Hongyu Chen, and Peter Wapperom, Donald Baird

Prepreg Platelet Composite Molding and Performance Workshop
Composites Manufacturing and Simulation Center, Purdue University
October 26, 2017
Current Projects and Titles-2017

- Numerical simulation of injection molding of long fiber thermoplastic composites (American Chemical Council)
- Benign processing of polymers using water or super-critical carbon dioxide-PAN (ORNL/DOE)
- Generation of sustainable composites based on thermoplastics reinforced with TLCP’s, rod-like molecules; automotive applications, and H2 storage (SRNL/DOE)
- Role of processing on the burst behavior of polyethylene pipes and tubing (Lyondell-Basell).
- High performance materials for use in additive manufacturing/3-D printing (NAI/NASA, 1 position)
- Polymer composites from plants (hemp) (2 positions)
- Novel polymer blends for removal of cancer cells in blood (BioTherapeutics/NIH)
Outline

• Motivation
 • Long fiber-reinforced plastic composites
 • Mechanical properties and manufacturing

• Background
 • Orientation models
 • Stress tensor
 • Fiber flexibility
 • Rheological testing: Shear and Extension

• Non-lubricated Squeeze Flow
 • Stress Growth
 • Orientation Evolution

• Conclusions & Future Plans
Objectives

• Develop a rheological test that will induce fiber flexing
 • Allows for testing of semi-flexible models
• Generate experimental stress growth data
 • Ultimate goal is to obtain orientation model parameters through stress-fitting
 • Currently obtain parameters by fitting to orientation data
 • Tedious and labor-intensive
Motivation: Mechanical Properties

Orientation Effects

<table>
<thead>
<tr>
<th>System (glass/epoxy)</th>
<th>Strength (10^3 psi)</th>
<th>Stiffness (10^3 psi)</th>
<th>Volume fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfilled resin</td>
<td>10-12</td>
<td>0.3-0.4</td>
<td>0</td>
</tr>
<tr>
<td>Spherical particles</td>
<td>9-10.5</td>
<td>1.5-1.7</td>
<td>0.50</td>
</tr>
<tr>
<td>Short fiber (transverse)</td>
<td>5.5</td>
<td>1.4</td>
<td>0.50</td>
</tr>
<tr>
<td>Short fiber (longitudinal)</td>
<td>40</td>
<td>4.5</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Length Effects

Top Down

50 wt% Nylon 6,6

0% W and 10% L
Unidirectional orientated fiber bundles

Long Fiber Thermoplastics retain the ability to be injection-molded

Widely Used in Industry & Suitable for Fiber Thermoplastic Composites
- Rapid & Automatic
- Repeatability & Geometrical Complexity
Two issues/facts of IM Long Fiber Thermoplastic Composites

- Flow induced variable orientation (Mold Cavity)

Center gated disk

3~4 distinguishable layers:

<table>
<thead>
<tr>
<th>Region</th>
<th>Orientation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Random in rθ plane</td>
<td>Thermal + Fountain</td>
</tr>
<tr>
<td>Shell</td>
<td>Flow Aligned</td>
<td>Shear flow</td>
</tr>
<tr>
<td>Transition</td>
<td>No preferential</td>
<td>Shear & extension</td>
</tr>
<tr>
<td>Core</td>
<td>Transverse to flow</td>
<td>Extensional flow</td>
</tr>
<tr>
<td>Transition</td>
<td>No preferential</td>
<td>Shear & extension</td>
</tr>
<tr>
<td>Shell</td>
<td>Flow Aligned</td>
<td>Shear</td>
</tr>
<tr>
<td>Skin</td>
<td>Random in rθ plane</td>
<td>Thermal + Fountain</td>
</tr>
</tbody>
</table>
Factors Affecting Properties in Injection Molding

- Fiber Breakage (Broad Distribution)

Nguyen, 2008
Huq and Azaiez, 2005
Background: Orientation

\[A = \int pp\psi(p, t) dp \]
\[A_4 = \int pppp\psi(p, t) dp \]

Background: Orientation Dynamics

\[
\frac{DA}{Dt} = \alpha \left((W \cdot A - A \cdot W) + \xi (D \cdot A + A \cdot D - 2D : A_4) \right) + 2C_1\gamma (I - 3A)
\]

Empirical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>Fiber slip relative to matrix</td>
</tr>
<tr>
<td>(C_1)</td>
<td>Fiber interactions</td>
</tr>
</tbody>
</table>

Semi-Flexible Fibers

\[\frac{DA}{Dt} = \alpha \left[W \cdot A - A \cdot W + \xi (D \cdot A + A \cdot D - 2D : A) + \frac{I_B}{2} (Cm + mC - 2(m \cdot C)A) + 2k (B - A tr (B)) \right] \]

\[\frac{DB}{Dt} = \alpha \left[W \cdot B - B \cdot W + \xi (D \cdot B + B \cdot D - (2D : A)B) - 4C_i \hat{B} + \frac{I_B}{2} (Cm + mC - 2(m \cdot C)B) + 2k (A - B tr (B)) \right] \]

\[\frac{DC}{Dt} = \alpha \left[\nabla v^t \cdot C - (A : \nabla v')C - 2C_i \hat{C} + \frac{I_B}{2} (m - C (m \cdot C)) - kC (1 - tr (B)) \right] \]

Hydrodynamic \quad IRD \quad Bending From Flow \quad Bending Potential

\[
A = \iint pp \psi(p, q, t) \, dp \, dq \\
B = \iint pq \psi(p, q, t) \, dp \, dq \\
C = \iint p \psi(p, q, t) \, dp \, dq \\
A_4 = \iint pppp \psi(p, q, t) \, dp \, dq
\]

\[
m = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \frac{\partial^2 v_i}{\partial x_j \partial x_k} A_{jk} e_i
\]

\[
r = l_B (p - q)
\]

\[
R = \frac{\langle rr \rangle}{tr(rr)} = \frac{A - B}{1 - tr (B)}
\]
Coupling Orientation to Flow

Stress Equation for Rigid Fibers:
\[\sigma = -P I + 2 \eta_m D + 2 \eta_m \phi (\mu_1 D + \mu_2 D : A_4) \]

Proposed Stress Equation for Semi-Flexible Fibers:
\[\sigma = -P I + 2 \eta_m D + 2 \eta_m \phi (\mu_1 D + \mu_2 D : R_4) + \eta_m k \frac{3 \phi a_r}{2} (B - AtrB) \]

Matrix Fibers

Matrix Fibers Fiber Bending

\[k = \frac{E_y}{8 \eta_m} \left(\frac{1}{a_r} \right)^3 \]

Lipscomb et al. 1988, Ortman et al. 2012
Experiments

Model Parameter Obtaining

\[\dot{v} \left(x_2 \right) = \dot{\gamma} \cdot x_2 \]

Startup of Simple Shear

Shear-free Flow
(Lubricated Squeeze Flow)

Giacomin, 1987
Dealy and Soong, 1984
\[\nabla \cdot \mathbf{v} = 0 \quad \text{(Continuity)} \]
\[\nabla \cdot \sigma = 0 \quad \text{(Momentum)} \]
\[\sigma = -P \mathbf{I} + 2\eta \mathbf{D} \quad \text{(Stress)} \]
\[\frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c = 0 \quad \text{(Pseudo-concentration)} \]
Nonlubricated Squeeze Flow

\[L_N = \frac{\sum N_i L_i}{\sum N_i} \]

\[L_W = \frac{\sum N_i L_i^2}{\sum N_i L_i} \]

\[L_Z = \frac{\sum N_i L_i^3}{\sum N_i L_i^2} \]
Both models predict noticeable drops of the values near the wall due to the fountain flow effect.

- Bead-Rod model shows improvement over the rigid model especially when the longest length parameters are used.
LGF Orientation Predictions in a EGP Parameters

Fitted to Experimental Data (Solid):
\[\alpha = 0.0039\]
\[C'_{I} = 0.4843\]
Fitted to Rheology (Dashed):
\[\alpha = 0.13\]
\[C'_{I} = 0.0530\]
Experiments

Shear

\[\dot{\gamma} = 0.1 \text{ s}^{-1} \]

Planar Extension

\[\dot{\varepsilon} = -0.05 \text{ s}^{-1} \]
Experiments

Rigid: Solid Line
Flexible: Dashed Line

\[\dot{\gamma} = 0.1s^{-1} \]

- Bead-Rod
 - \(\alpha = 0.045 \)
 - \(C_1 = 0.055 \)
- Folgar-Tucker
 - \(\alpha = 0.11 \)
 - \(C_1 = 0.008 \)
Experiments

Rigid: Solid Line
Flexible: Dashed Line

Planar Extension

$\dot{\epsilon} = -0.05 \text{s}^{-1}$

Folgar-Tucker
$\alpha = 0.97$
$C_i = 0.01$

Bead-Rod
$\alpha = 0.95$
$C_i = 0.04$
Background: Empirical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Shear</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.11</td>
<td>0.97</td>
</tr>
<tr>
<td>C_1</td>
<td>0.008</td>
<td>0.01</td>
</tr>
<tr>
<td>Flexible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.045</td>
<td>0.95</td>
</tr>
<tr>
<td>C_1</td>
<td>0.055</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Ongoing and Future Efforts

• Develop a test that will induce fiber flexing
 • Allows for testing of semi-flexible models

• Generate experimental stress growth data
 • Ultimate goal is to obtain orientation model parameters through stress-fitting
 • Currently obtain parameters by fitting to orientation data
 • Tedious and labor-intensive

• Identifying bending parameter through stress relaxation tests
Experimental: NLSF

- Combination of shear and extension
- Second-order velocity gradients
- Closure stress easily measured
NLSF Schematic

\[w(H) = \dot{H}(t_0) \]

\[z = +H(t_0) \]

\[z = 0 \]

\[w(H) = \dot{H}(t) \]

\[z = +H(t) \]
Experimental: NLSF

\[
\begin{align*}
u(x, z, t) &= -6 \frac{\dot{H}}{H} x \left[\left(\frac{Z}{H} \right) - \left(\frac{Z}{H} \right)^2 \right] \\
w(z, t) &= \dot{H} \left[3 \left(\frac{Z}{H} \right)^2 - 2 \left(\frac{Z}{H} \right)^3 \right] \\
P(x, z, t) &= 6\eta \frac{\dot{H}}{H} \left[\frac{x^2}{H^2} + \frac{z}{H} - \frac{Z^2}{H^2} \right] + P_a
\end{align*}
\]

Nonlubricated Squeeze Flow

- Stress increases with fiber content
- Similar behavior in each case
- Increase from zero
 - GNF-based stress models cannot predict this

Error bars represent 95% CI
Experimental: Sample Prep

• Samples made of nozzle purge produced using the same conditions as injection-molded CGDs
• Testing Temperature: 200°C
• Constant Hencky Strain Rate: -0.50 s⁻¹
• Sample Dimensions
 ▪ 3.75 in (95.25 mm) wide
 ▪ 2 in (50.8 mm) long
 ▪ 7.50 mm thick
• Initial planar random fiber orientation
 ▪ Compression molded “unidirectional” strands
 ▪ 30 wt% Short Glass Fiber + Polypropylene (SABIC)
Experimental: Sample Prep

Through-Thickness Orientation Observation
Experimental: Sample Prep

- **Z** (thickness)
- **X** (flow)
- **Y**

Arrows indicating:
- **Minor**
- **Major**
- **Center**
Results: Orientation

Parameters from Startup of Simple Shear

Parameters from NLSF

Results: Orientation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cieslinski et al.(^1) (simple shear)</th>
<th>NLSF(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.20</td>
<td>1.00</td>
</tr>
<tr>
<td>(C_I)</td>
<td>0.005</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Results: Stress Growth

Parameters from Simple Shear

Parameters from NLSF

Conclusions

• Parameters in orientation models obtained from planar extension are different from those in shear flow.

• These parameters lead to a significant difference in the prediction of orientation distribution in an injection molded disk (center-gated) especially in the semi-flexible fiber model.

• Homogeneous flows tend to not test the bending contribution to stress and fiber orientation.

• Non-lubricated squeeze flow will potentially lead to a method for obtaining the parameters in the orientation models from basic flow properties.

• Existing stress tensors have a flaw in the startup of flow which needs to be addressed.
Future Work

• Obtain orientation data on samples subjected to non-lubricated squeeze flow
• Obtain orientation parameters in the Bead-Rod Model from this orientation data
• Compare the values obtained above with those obtained from fitting stress growth data and possibly stress relaxation data
• Use wet-layed prepared samples to control fiber length and minimize fiber breakage
Acknowledgements