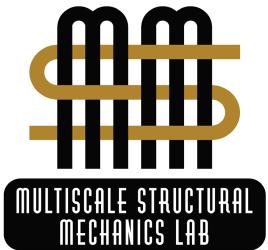


Composites Manufacturing & Simulation Center ™

Composites Design & Manufacturing **HUB**

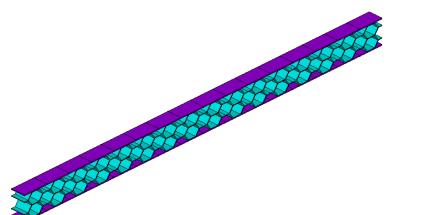


MSG-BASED MULTISCALE MODELING FOR BEAMS

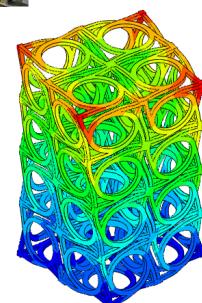
Wenbin Yu

Professor, Purdue/AAE, Purdue/CMSC Director, cdmHUB Associate Director, IACMI/cvfHUB CTO, AnalySwift LLC

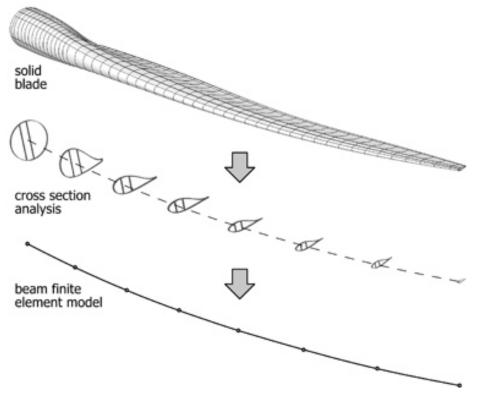
Need of Multiscale Modeling for Beams







Design of Wind Turbine Blades



Courtesy of DTU Wind Energy

3

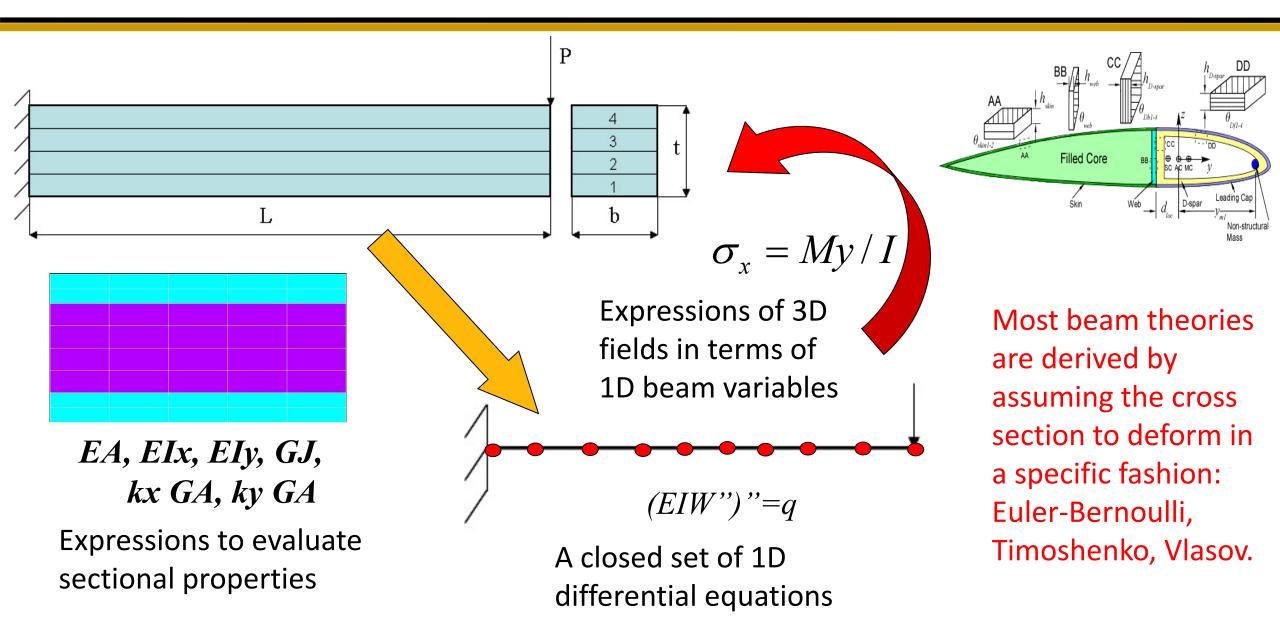
Design of a wind turbine blade

Phase 1: pre-design based on1D beam analysis together and 2D cross section analysis.

Phase 2: design with full 3D analysis of the blade.

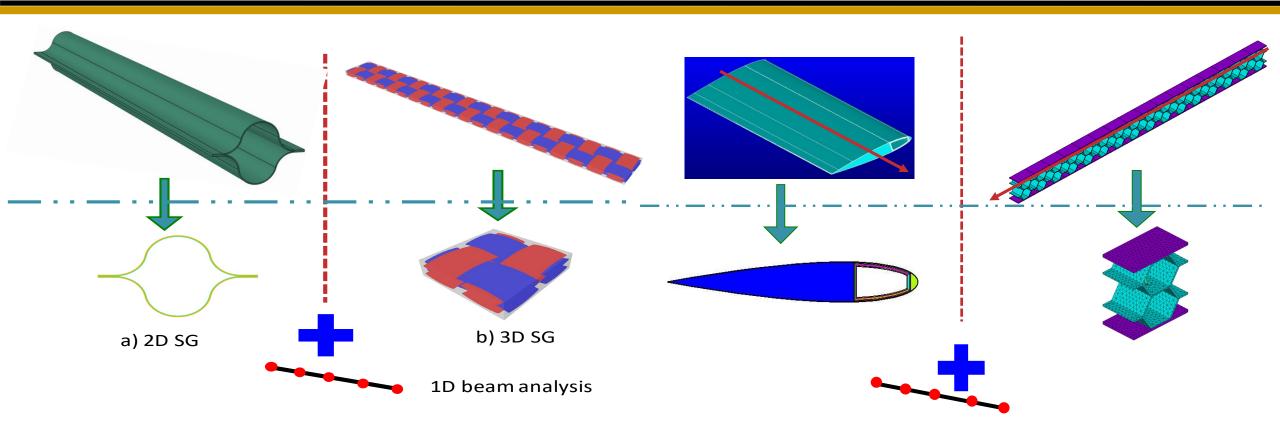
Full 3D analysis is several orders of magnitude higher in terms of computational costs.

Three Essences of a Beam Theory



Traditional Beam Model

- > Invoke adhoc kinematic assumptions to express the kinematics.
- > Invoke unixal stress assumption to relate 3D stresses and strains.
- > Define beam stress resultants in terms of 3D stresses.
- Derive equilibrium equation using the Newtonian approach or the variational approach.
- Solve the beam equations to obtain the global beam behavior including displacements, rotations, forces and moments.
- Recover 3D stresses/strains based on the global beam behavior.



► Kinematics
$$u_1(x_1, y_1, y_2, y_3) = \bar{u}_1(x_1) - \varepsilon y_3 \bar{u}_3'(x_1) - \varepsilon y_2 \bar{u}_2'(x_1)$$

 $+ \varepsilon w_1(x_1, y_1, y_2, y_3)$
 $u_2(x_1, y_1, y_2, y_3) = \bar{u}_2(x_1) - \varepsilon y_3 \Phi_1(x_1) + \varepsilon w_2(x_1, y_1, y_2, y_3)$
 $u_3(x_1, y_1, y_2, y_3) = \bar{u}_3(x_1) + \varepsilon y_2 \Phi_1(x_1) + \varepsilon w_3(x_1, y_1, y_2, y_3)$
 $\Phi_1 = \frac{1}{2} \langle u_{3,2} - u_{2,3} \rangle$ $\langle w_i \rangle = 0$ $\langle w_{3|2} - w_{2|3} \rangle = 0$
 $\bar{u}_2 = \langle u_2 \rangle + \varepsilon \langle y_3 \rangle \Phi_1$
 $\bar{u}_3 = \langle u_3 \rangle - \varepsilon \langle y_2 \rangle \Phi_1$ $\varepsilon_{11} = \varepsilon_1(x_1) + \varepsilon y_3 \kappa_2(x_1) - \varepsilon y_2 \kappa_3(x_1) + \underbrace{w_{1|1}}_{3|2} + \varepsilon \underbrace{w_{1,1}}_{2|2}$
 $\epsilon_{12} = -\varepsilon y_3 \kappa_1 + w_{1|2} + \underbrace{w_{2|1}}_{2|1} + \varepsilon \underbrace{w_{2,1}}_{2|2}$
 $2\varepsilon_{13} = \varepsilon y_2 \kappa_1 + w_{1|3} + \underbrace{w_{3|1}}_{3|1} + \varepsilon \underbrace{w_{3,1}}_{3|1}$

► Kinematics
$$u_1(x_1, y_1, y_2, y_3) = \bar{u}_1(x_1) - \varepsilon y_3 \bar{u}_3'(x_1) - \varepsilon y_2 \bar{u}_2'(x_1)$$

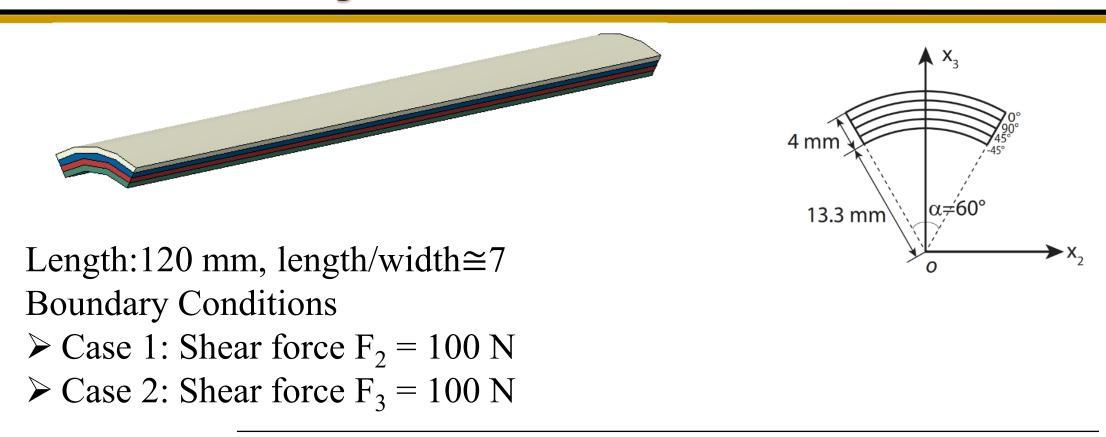
 $+ \varepsilon w_1(x_1, y_1, y_2, y_3)$
 $u_2(x_1, y_1, y_2, y_3) = \bar{u}_2(x_1) - \varepsilon y_3 \Phi_1(x_1) + \varepsilon w_2(x_1, y_1, y_2, y_3)$
 $u_3(x_1, y_1, y_2, y_3) = \bar{u}_3(x_1) + \varepsilon y_2 \Phi_1(x_1) + \varepsilon w_3(x_1, y_1, y_2, y_3)$
 $\Phi_1 = \frac{1}{2} \langle u_{3,2} - u_{2,3} \rangle$ $\langle w_i \rangle = 0$ $\langle w_{3|2} - w_{2|3} \rangle = 0$
 $\bar{u}_2 = \langle u_2 \rangle + \varepsilon \langle y_3 \rangle \Phi_1$
 $\bar{u}_3 = \langle u_3 \rangle - \varepsilon \langle y_2 \rangle \Phi_1$ $\varepsilon_{11} = \varepsilon_1(x_1) + \varepsilon y_3 \kappa_2(x_1) - \varepsilon y_2 \kappa_3(x_1) + \underbrace{w_{1|1}}_{3|2} + \varepsilon \underbrace{w_{1,1}}_{2|2}$
 $\epsilon_{12} = -\varepsilon y_3 \kappa_1 + w_{1|2} + \underbrace{w_{2|1}}_{2|1} + \varepsilon \underbrace{w_{2,1}}_{2|2}$
 $2\varepsilon_{13} = \varepsilon y_2 \kappa_1 + w_{1|3} + \underbrace{w_{3|1}}_{3|1} + \varepsilon \underbrace{w_{3,1}}_{3|1}$

$$\succ \text{Energy} \qquad U = \int_0^L \frac{1}{\omega} \left\langle \left\langle \frac{1}{2} e^T C e \right\rangle \right\rangle dx_1 \qquad e = \lfloor \varepsilon_{11} \quad \varepsilon_{22} \quad \varepsilon_{33} \quad 2\varepsilon_{23} \quad 2\varepsilon_{13} \quad 2\varepsilon_{12} \rfloor$$
$$W = \int_0^L \frac{1}{\omega} \left(\left\langle \left\langle f_i u_i \right\rangle \right\rangle + \oint_{\partial \Omega} t_i u_i \, ds \right) dx_1 + [t_i u_i]_{x_1=0} + [t_i u_i]_{x_1=L}$$
$$\int_0^L \left(\frac{1}{2} \bar{\varepsilon}^T \bar{C} \bar{\varepsilon} - p_i \bar{u}_i - q_i \Phi_i \right) dx_1 - (P_i \bar{u}_i + Q_i \Phi_i)|_{x_1=0}$$
$$- (P_i \bar{u}_i + Q_i \Phi_i)|_{x_1=L}$$

> Minimize the energy loss to solve for w_i

$$\int_0^L \left(\frac{1}{2} \bar{\varepsilon}^T \bar{C} \bar{\varepsilon} - p_i \bar{u}_i - q_i \Phi_i \right) dx_1 - (P_i \bar{u}_i + Q_i \Phi_i)|_{x_1 = 0}$$
$$- (P_i \bar{u}_i + Q_i \Phi_i)|_{x_1 = L}$$

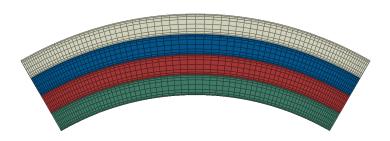
Accurate Free-Edge Stress Analysis for a Curved Section



					12	v_{13}	v ₂₃
132000 10800	10800	5650	5650	3380	0.24	0.24	0.59

Computational Cost Comparison

MSG cross-sectional model

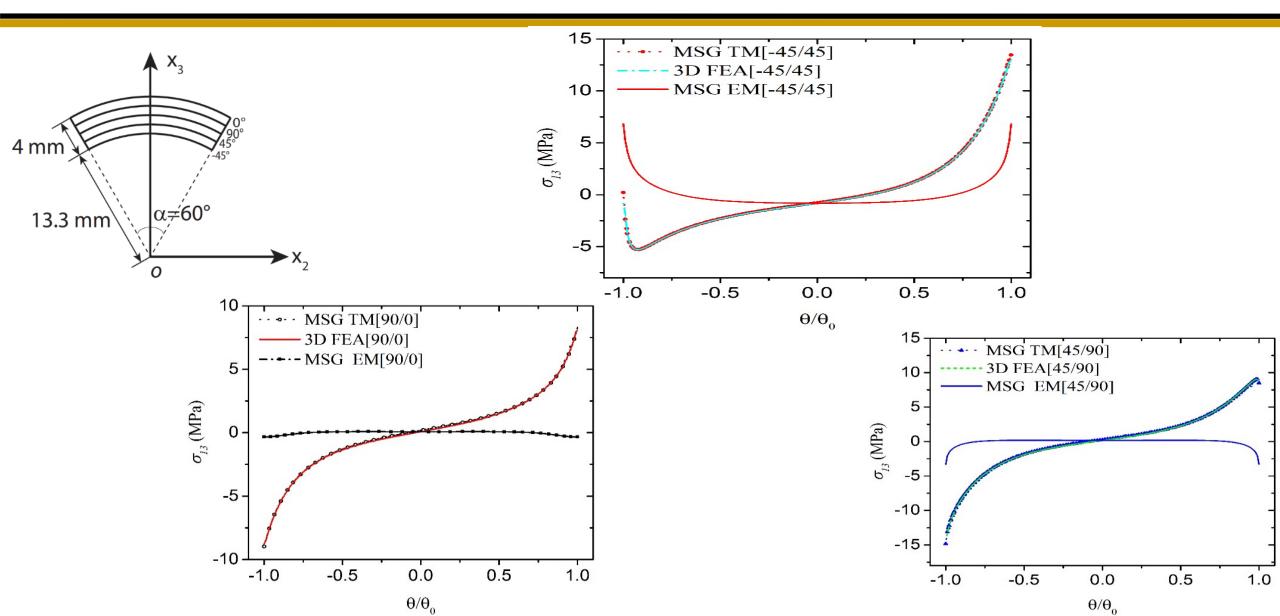


6,937 nodes2,240 8-noded quads<3 seconds with 1 CPU

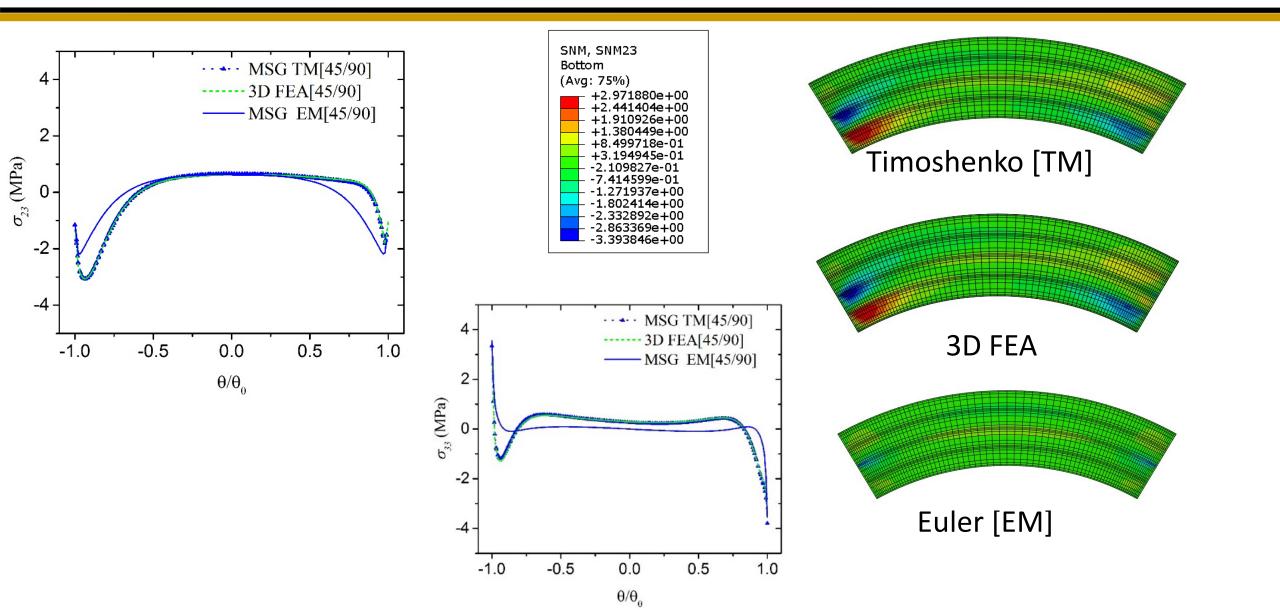
 3D FEA model:120 mm long, length/width≅7 (4 layers only)

>4M nodes >1M C3D20Rs **4 hours with 24 CPUs** Prohibitive for more realistic structures, e.g. flexbeam (100+ layers) 11

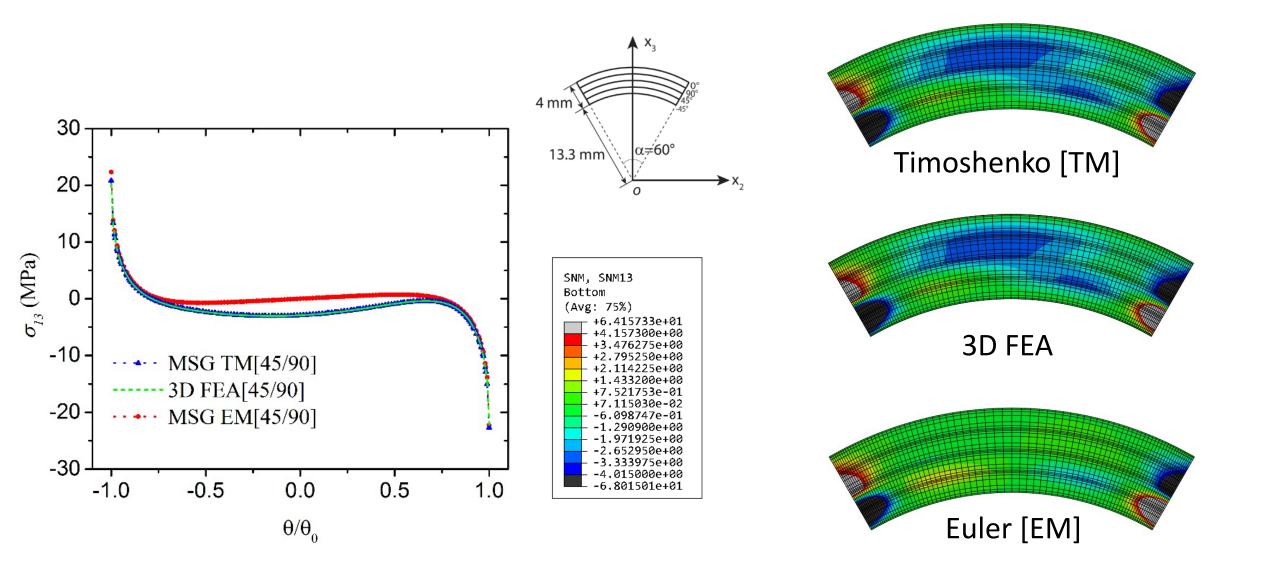
Inter-laminar Shear Stresses under F₂



Inter-laminar Shear Stresses under F₂



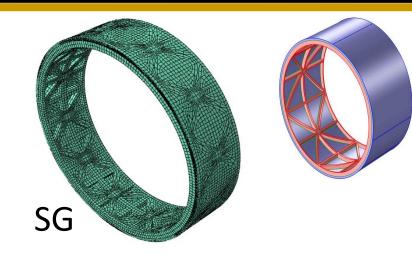
Inter-laminar Shear Stresses under F₃



Stiffened Composite Cylinder

Skin layup: [45/-45/90/0/45]s, thickness 0.09 in Stiffener width & depth: 0.18 in unit (psi)

E ₁	E ₂ =E ₃	G ₁₂ =G ₁₃	G ₂₃	v ₁₂ =v ₁₃	V ₂₃
1.923E+07	1.566E+06	8.267E+05	4.931E+05	0.24	0.49
Х+	Y+=Z+	X -	Y⁻=Z⁻	R	S=T



Cylinder has 20 SGs

Stiffened Composite Cylinder

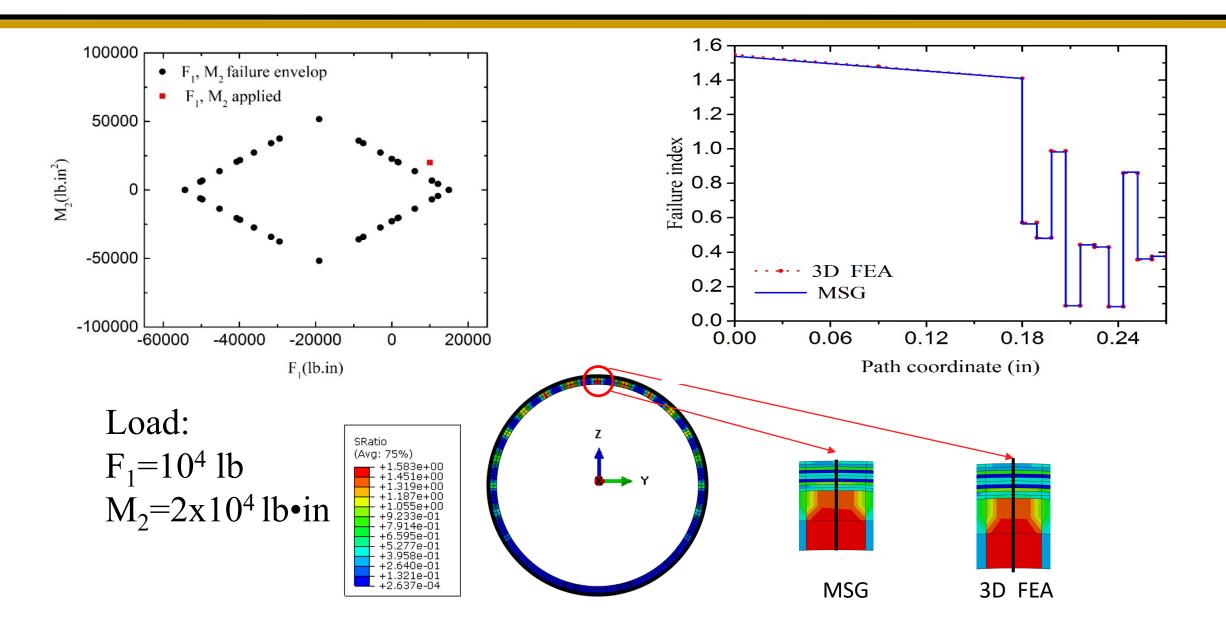
Effective stiffness (Timoshenko model)

Extension	Shear			Shear-bending	
(lb)	(lb)	(lb•in ²)	(lb•in ²)	(lb•in)	twisting (lb•in)
1.192E7	2.153E6	3.763E7	5.131E7	3.981E5	-8.143E5

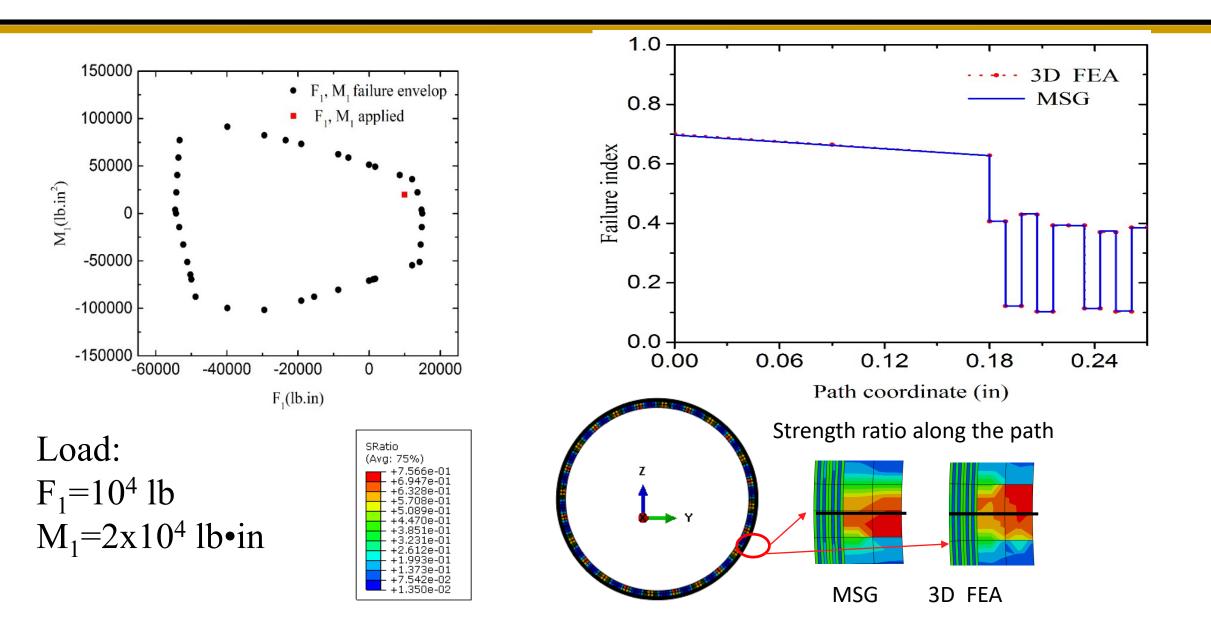
Effective strength (Timoshenko model)

Direction	F ₁ (lb)	F ₂ =F ₃ (lb)	M ₁ (lb•in)	M ₂ =M ₃ (lb•in)
+	1.498E4	8.782E3	5.144E4	2.281E4
-	5.430E4	8.782E3	7.073E4	2.281E4

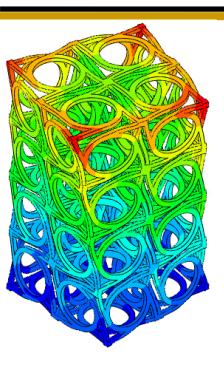
Failure Envelope & Strength Ratio



Failure Envelope & Strength Ratio



Constitutive Modeling of Metamaterials

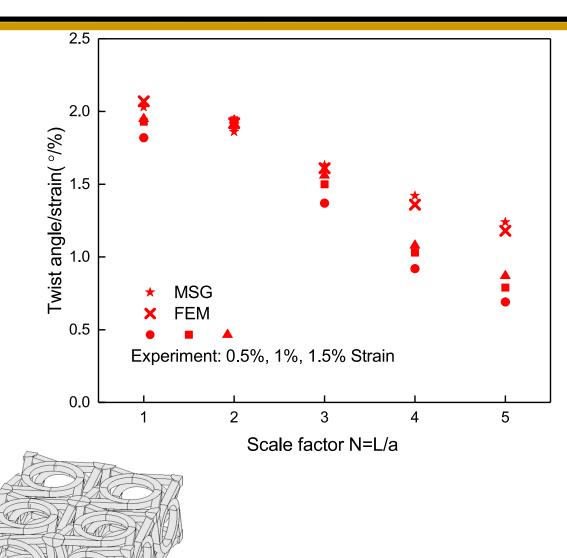


Frenzel, T., Kadic, M., & Wegener, M. (2017). Threedimensional mechanical metamaterials with a twist. *Science*, *358*, 1072-1074.

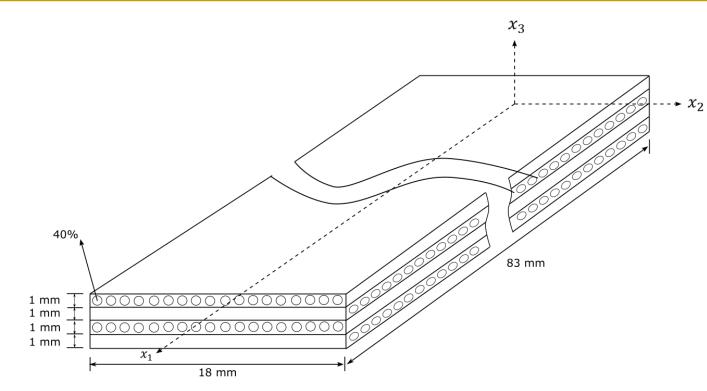
╬

Beam

3D SG

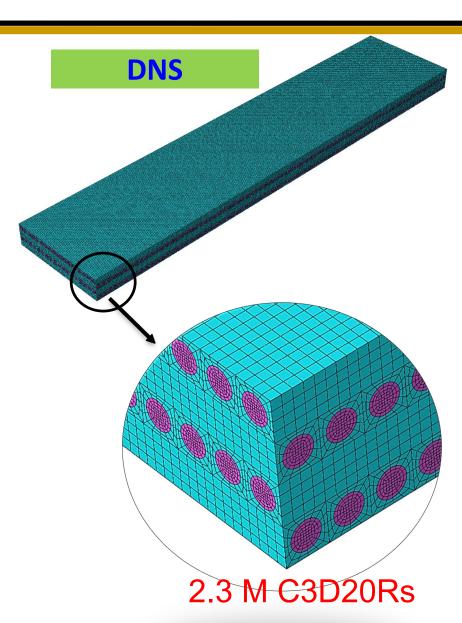


Four Layer Cross-Ply Laminate

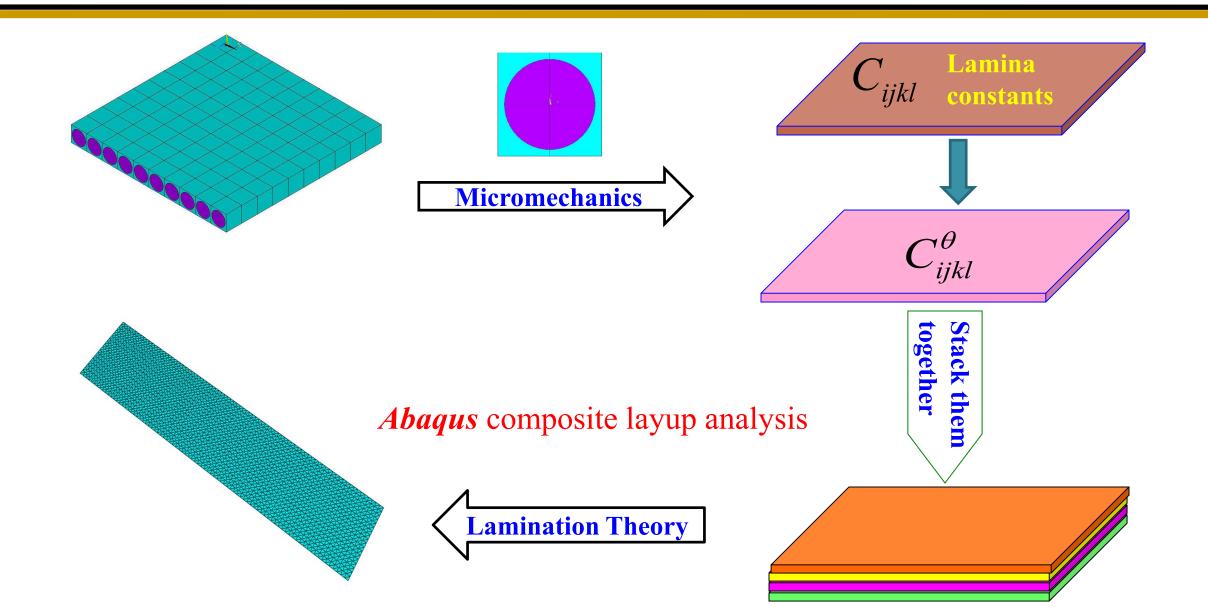


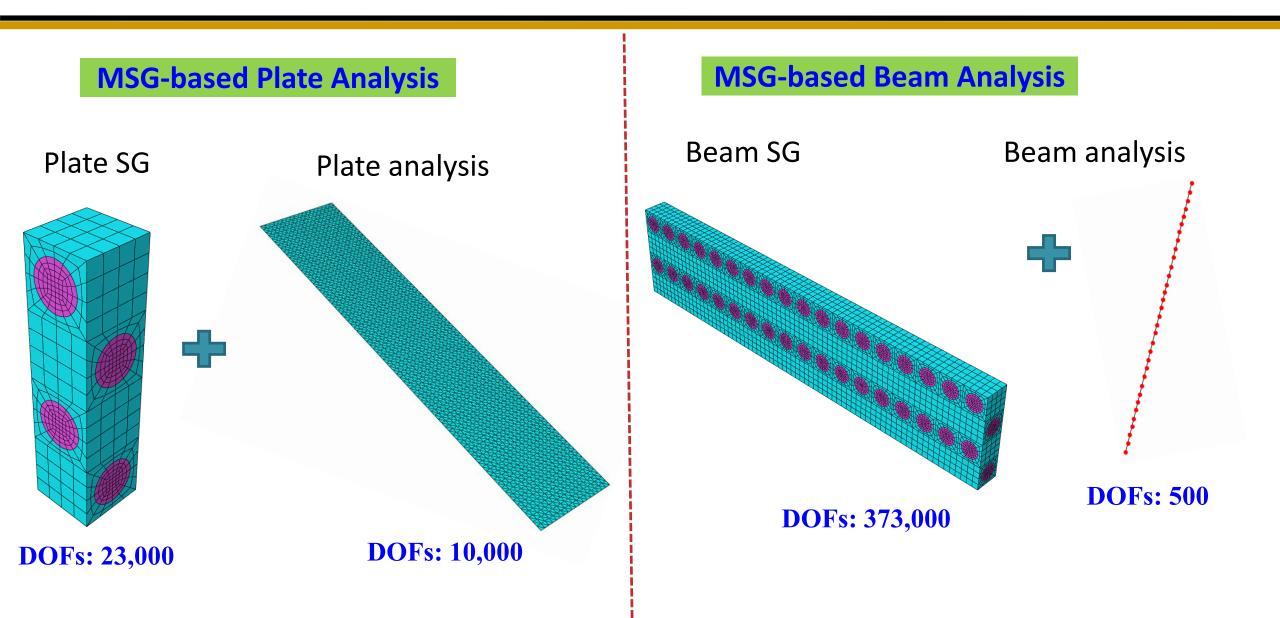
Material	<i>E</i> (GPa)	ν
Fiber	276	0.28
Matrix	4.76	0.37

Cantilever with a tensile load at the geometry center of the tip section



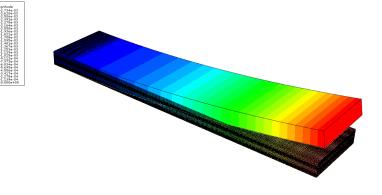
Bottom-up Multiscale Modeling





Global Behavior

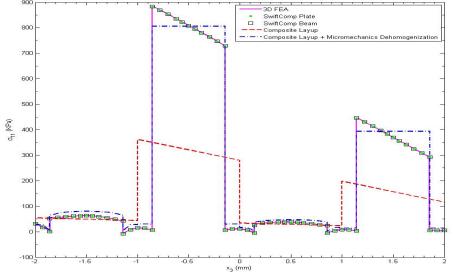
Method	U ₁	Absolute error
3D FEA	2.0849×10^{-4}	
MSG Beam	2.0873×10^{-4}	0.1151%
MSG Plate	2.0832×10^{-4}	0.0815%
ABAQUS Composite layup	2.0804×10^{-4}	0.2158%

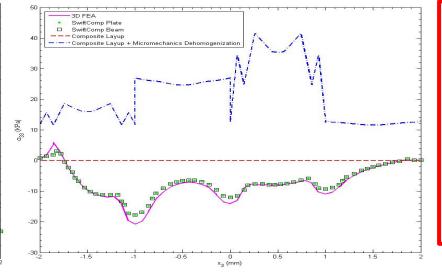


Method	U ₃	Absolute error
3D FEA	2.7124×10^{-3}	
MSG beam	2.7146×10^{-3}	0.0811%
MSG plate	2.7084×10^{-3}	0.1475%
ABAQUS Composite layup	2.5264×10^{-3}	6.8574%

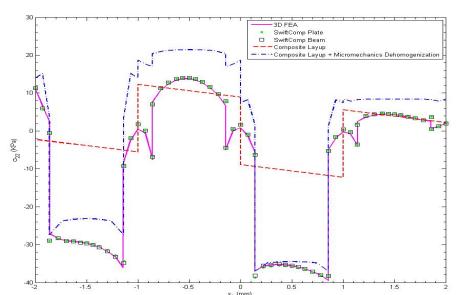
- Conventional method under predicts the deflection
- SwiftComp-based beam and plate analyses both agrees with 3D FEA

Local Stress Distribution





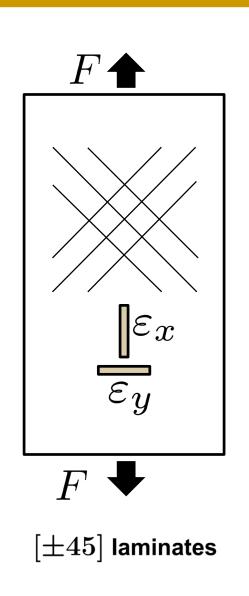
- Conventional method
 predicts poorly
- MSG-based beam & plate analyses achieve excellent agreements with DNS

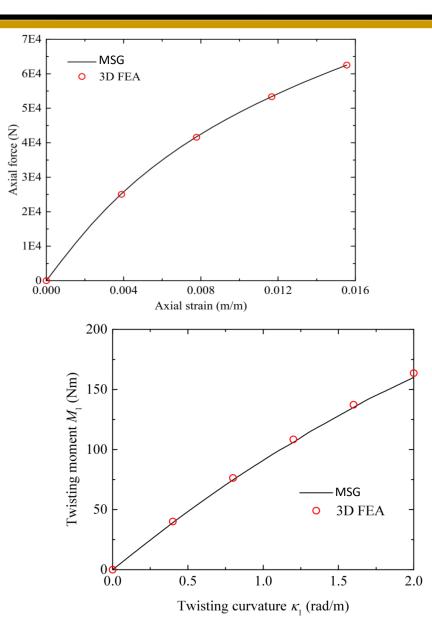


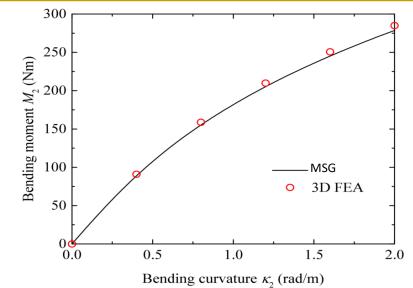
Method	CPUs	Time
DNS	48	7.5 Days
Abaqus composite layup	1	30"
SwiftComp plate analysis	1	40"
SwiftComp beam analysis	1	4'35"

MSG reproduces DNS with 1/10⁶ computing time, as fast as traditional multiscale modeling

Modeling Nonlinear Shear Behavior

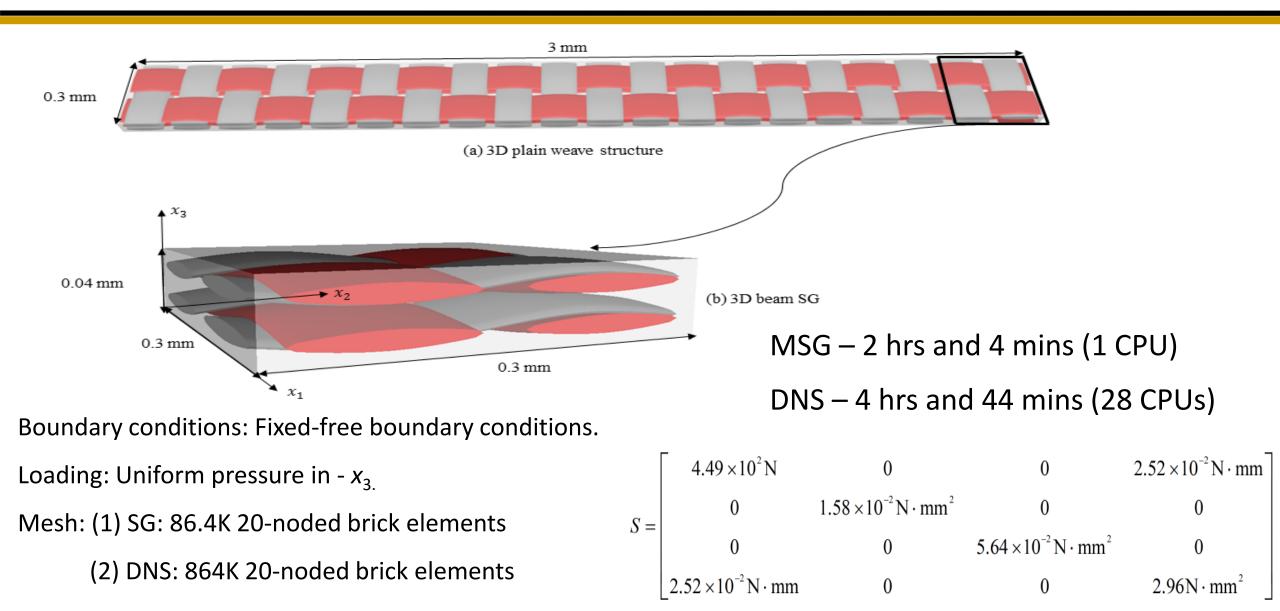




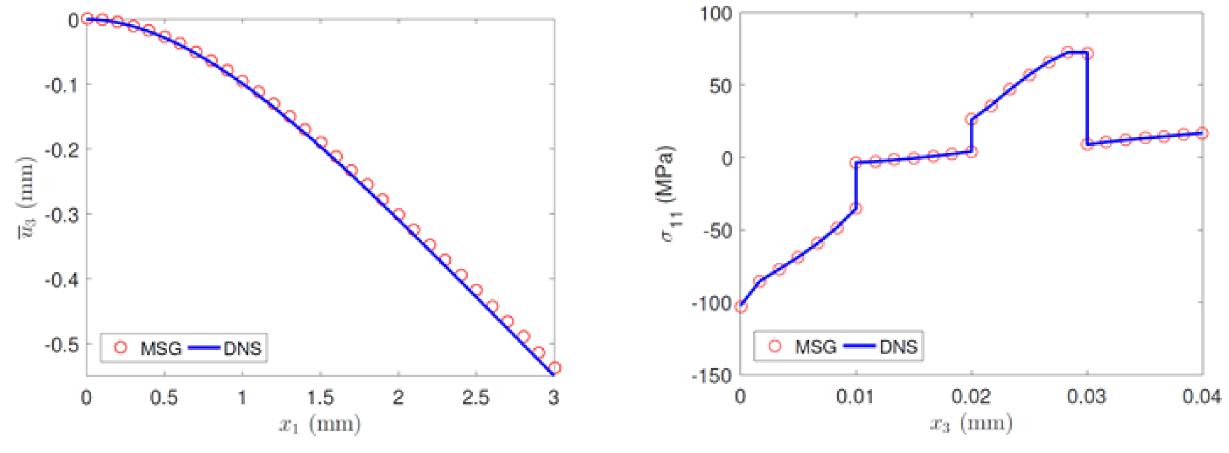


Can be used to calibrated in-plane nonlinear shear behavior using the tensile load-displacement curve then use this calibrated constitutive relations to predict other nonlinear behavior.

MSG Multiscale Structural Modeling



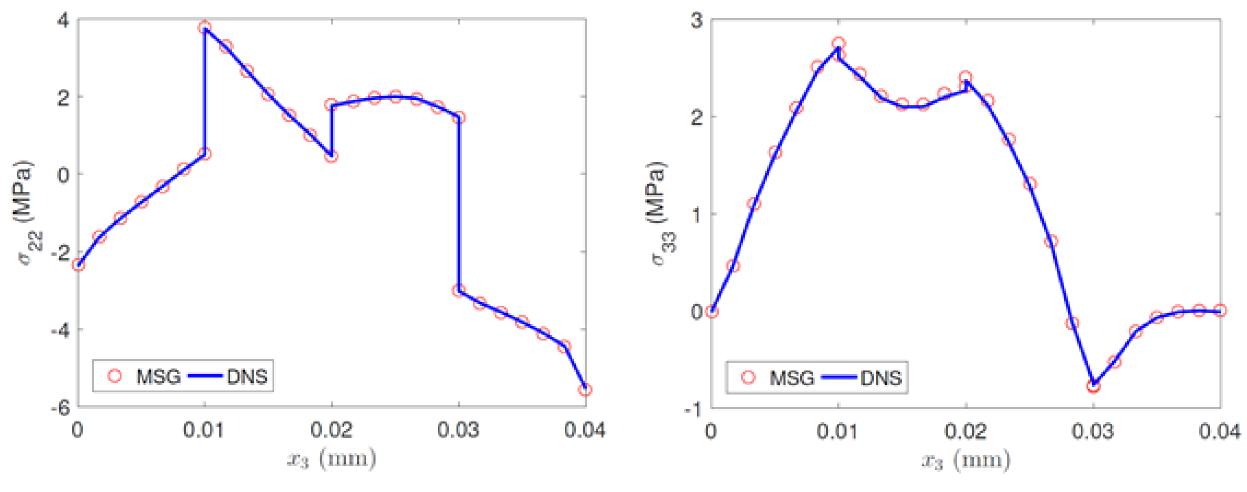
MSG Multiscale Structural Modeling



Deflection in plain weave beam along x_1 direction.

Distribution of σ_{11} through the thickness.

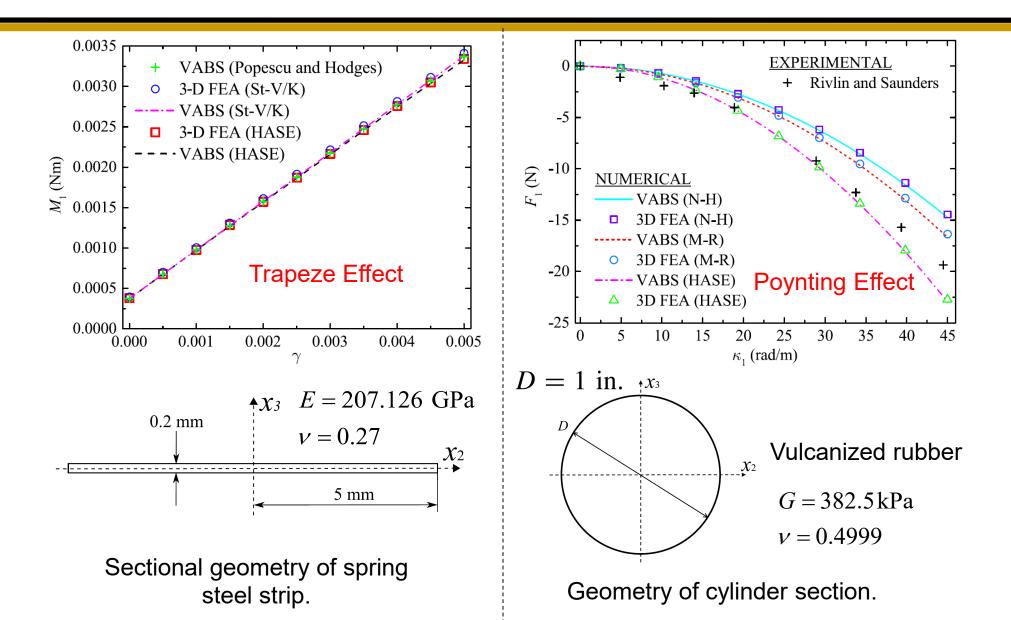
MSG Multiscale Structural Modeling



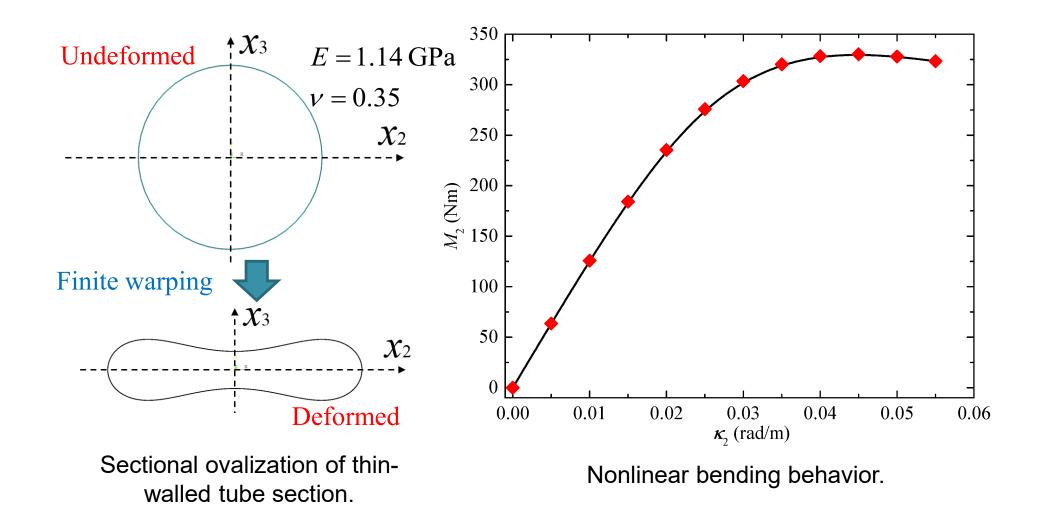
Distribution of σ_{22} through the thickness.

Distribution of σ_{33} through the thickness.

Finite Strain: Trapeze and Poynting Effects



Finite Strain: Brazier Effects



Conclusion

- MSG provides a unified approach to model all beam-like structures.
- MSG theoretically achieves the best tradeoff between efficiency and accuracy.
- MSG-based beam models are proven to be much better than other existing models and
- More applications of MSG for multiscale modeling for beams should be explored.

