Master stiffness and strength of composite laminates

Stephen W. Tsai

stsai@Stanford.edu

December 8, 2022

Critique of Composite Materials

"Composite materials in general are poorly understood therefore not employed optimally" on lessons learned from 787

> By John Byrne, Head, Materials and Structures, Boeing Commercial at Carbon Fiber in December 2014

"I do not say you don't innovate, ... innovate more on how to [design jets] more simplistically, as oppose to driving more complexity, ...How do you innovate to make it more producible? ... more reliable?" on composites, ...

By Ray Conner, Head, Boeing Commercial, with WSJ, April 2015

Better understood and more simplistic

Keys to eliminate self-inflicted complexities

Aluminum

Isotropy

The new CFRP

- Master stiffness: $A_{11} + A_{22} + 2A_{66} =$ Trace (one and only)
- Scalar product: $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ (e.g., Tsai-Wu)
- Master failure criterion: omni envelopes (X and X' only)

• Homogeniety

- Conditions: [A*] = [D*], [B*] = 0 (less complexity)
- Double-double: $[\pm \Phi/\pm \Psi]_{rT}$ to replace $[0_p/\pm 45_q/90_r]_s$
- Rating and scaling: instant answer without recalculation
- Constant thickness
- Additive manufacturing: tapered to save weight

Trace: one master stiffness constant for all laminates

Elastic constants of DD as percentages of trace

Materi	al	L_			_	_			_	Ge	901	net	:ry_							
			* 0/	<u> </u>									• 0/ -							_
Ply material	Trace	<u>^1</u>	1 , / 	0	15	30	45	60	75	90[-	:Ψ]	~ 66	, /0	15	30	45	60	75	90	-
IM6/epoxy	232	-	15	89	78		-		are		90 75	0	3.1	8.0				are		
IM7/977-3	218		30	71	66	53		Sar	metri		60	30	10.4	12.9	17.7		Sal	metri		
T300/5208	206	[±Φ]	45	58	53	40	27	541.			45	45	12.9	15.3	20.2	22.6	SN'			
IM7/MTM45	195		60	50	45	37 ³²	19	11			30	60	10.4	12.9	317.7	20.2	17.7			
T800/Cvtec	183		75	47	42	30	17	9	6	5	15	75	5.5	8.0	12.9	15.3	12.9	8.0	2.1	
M7/8552	180	i —	90	47 90	42	60	45	30	15	0		× 0/	3.1	5.5	10.4	12.9	A12* =	5.5 A66*	- 1.5	-
T800S/3900	168	1	[0]	at [2]	2.5/6	7.51	[±Ψ]	50	-15		A22	, ⁄0	A ₁₂	* = A	66 ^{* –}	1.5		100	1.5	
T300/F934	168		г ж	0								. *								
T700 C-Plv 64	163		Ε 1 [°] ,	%	15	30	45	60	75	90		V21	0	15	30	45	60	75	90	
ASA/H3501	162		0	88	71				uare	c	90	15	0.32	1 10						90
T650/00000	160		30	61	51	30		SU	nmetr		60	30	1.08	1.32	1.43					60
	100	[±Φ]	45	50	41	22	11	SH			45	45	0.70	0.83	0.97	0.77				45
14708/MR60H	158		60	47	40	24	11	6			30	60	0.31	0.3	0.51	0.47	0.31			30
T700/2510	144		75	47	41	27	13	7	5.4		15	75	0.10	0.10	.26	0.26	0.17	0.08		15
AS4/MTM45	143		90	47	41	28	14	7	5.4	5.2	0	90	0.04	0.09	0.18	0.20	0.13	0.05	0.02	0
T700 C-Ply 55	139			90	75	60	45	30	15.0	0.0	E ₂ *	,%	90	75	60	45	30	15	0	ν
		-	-				[±Ψ]								[±Ψ]			

Better understood and more simplistic

Keys to eliminate self-inflicted complexities

Aluminum

Isotropy

The new CFRP

- Master stiffness: $A_{11} + A_{22} + 2A_{66} =$ Trace (one and only)
- Scalar product: $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ (e.g., Tsai-Wu)
- Master failure criterion: omni envelopes (X and X' only)

• Homogeniety

- Conditions: [A*] = [D*], [B*] = 0 (less complexity)
- Double-double: $[\pm \Phi/\pm \Psi]_{rT}$ to replace $[0_p/\pm 45_q/90_r]_s$
- Rating and scaling: instant answer without recalculation
- Constant thickness
- Additive manufacturing: tapered to save weight

FPF omni envelopes for Tsai-Wu and max strain

FPF/LPF radia, diameters, and center locations

Absolute and normalized radius of FPF envelope

Absolute and normalized envelope center locations

CFRP	Δx^*	Х	Χ'	SR X/X'
AS4/H3501	0.00	1447	1447	1.00
T3/N52	0.00	1500	1500	1.00
T3/F93	0.20	1314	1220	1.04
T8S/3900	0.48	3000	2500	1.10
T650/ep	0.74	2194	1653	1.15
IM7/MTM	1.00	2500	1700	1.21
IM7/8552'	1.00	2501	1700	1.21
C-Ply 64	1.02	2944	1983	1.22
T4708/MR	1.02	2524	1700	1.22
T7/2510	1.05	2172	1450	1.22
C-Ply 55	1.07	2530	1669	1.23
IM7/8552	1.66	2326	1200	1.39
IM7/977	1.76	3250	1600	1.43
T800/Cyt	2.00	3768	1656	1.51
IM6/ep	2.00	3500	1540	1.51
	Materia	al		

adjustment

Double transformation between mirrored envelopes

Between [60/15] and [75/30]

Interpolation among envelopes

Master envelopes from 15 radius-normalized CFRP

Recovery of individual from master envelope

DD failure envelopes: recovered from master

Better understood and more simplistic

Keys to eliminate self-inflicted complexities

Aluminum

Isotropy

The new CFRP

- Master stiffness: $A_{11} + A_{22} + 2A_{66} =$ Trace (one and only)
- Scalar product: $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ (e.g., Tsai-Wu)
- Master failure criterion: omni envelopes (X and X' only)

• Homogeniety

- Conditions: [A*] = [D*], [B*] = 0 (less complexity)
- Double-double: $[\pm \Phi/\pm \Psi]_{rT}$ to replace $[0_p/\pm 45_q/90_r]_s$
- Rating and scaling: instant answer without recalculation
- Constant thickness
- Additive manufacturing: tapered to save weight

Stacking sequence permutations: quad vs DD

16

DD opportunities in manufacturing

Not possible with quad

DD opportunities in design Not possible with quad

OHT and CAI data for quad and DD

Data from B. Falzon et al, Queen's Univ Belfast, and RMIT₁₀

Design allowable generation: [0/90] only + as-built

Better understood and more simplistic

Keys to eliminate self-inflicted complexities

Aluminum

Isotropy

The new CFRP

- Master stiffness: $A_{11} + A_{22} + 2A_{66} =$ Trace (one and only)
- Scalar product: $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ (e.g., Tsai-Wu)
- Master failure criterion: omni envelopes (X and X' only)

• Homogeniety

- Conditions: [A*] = [D*], [B*] = 0 (less complexity)
- Double-double: $[\pm \Phi/\pm \Psi]_{rT}$ to replace $[0_p/\pm 45_q/90_r]_s$
- Rating and scaling: instant answer without recalculation
- Constant thickness
- Additive manufacturing: tapered to save weight

A key improvement over failure criterion

σy

 $\sigma_i^{applied}$

 σ_{imax}

Rcosθ

R = 1

 σ_{\times}

2000

Strength ratio R

 $\sigma_i^{max} = R\sigma_i^{applied}$, or

- $\varepsilon_i^{max} = R\varepsilon_i^{applied}$
 - 1) When R = 1, failure occurs

- 3) When R = 0.5, stress can be 1/2 or thickness doubled before failure
- 4) When applied stress is unity, the resulting R-value is the strength

```
For Tsai-Wu failure F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1;
substitute and solve for R:
[F_{ij}\sigma_i\sigma_j]R^2 + [F_i\sigma_i]R - 1 = 0
```

Scaling options in input and output data

	Input: normalized vectors						Inp	ut: ac	tual st	resses	;		Inpi				
		D	E	F				D	E	F				D	E	F	
	21	Fuse	lage	Fixed		7/077 2	21	Fuse	lage	Fixed			21	Fusel	age	Fixed	
	22	1.00	0.45	0.00		/+751	22	459	208	0.00	459 x 2	2.34 = 1	.079	1079	489	0.00	
	23	0.73	0.31	0.00	ĮŪ	2/1/5]	23	333	143	0.00			23	783	336	0.00	
	24	0.45	0.17	0.00			24	207	77	0.00			24	487	182	0.00	
	25	0.18	0.03	0.00			25	81	12	0.00			25	191	29	0.00	
	26	-0.10	-0.11	0.00			26	-45	-53	0.00			26	-106	-125	0.00	
	27	-0.37	-0.25	0.00			27	-171	-119	0.00			27	-402	-278	0.00	
	28	-0.65	-0.39	0.00			28	-297	-184	0.00			28	-698	-432	0.00	
	29	-0.275	-0.140	0.000			29	-126	-65	0.000			29 :	-296	-153	0.000	
	Failure stress: R = 1079 MPaSafety factor: R = 2.34Failure stress: R = 1.00																
	K	L	М	N	0		К	L	М	Ν	0		К	L	Μ	N	0
31	65	70	75	80	85	31	65	70	75	80	85	31	65	70	75	80	85
32	822	972	1079	1066	1058	32	1.76	2.09	2.34	2.31	2.30	32	0.75	0.89	1.00	0.98	0.98
33	804	952	1063	1062	1053	33	1.73	2.05	2.32	2.30	2.29	33	0.73	0.87	0.99	0.98	0.97
34	753	895	999	1043	1037	34	1.62	1.93	2.18	2.27	2.25	34	0.69	0.82	0.93	0.97	0.96

Working stress of various structural compontents

Multiple component load sets

Best DD and working stress

$\sigma^{\circ} \sigma^{\circ} \sigma^{\circ}$	σ.°	o.°	œ.°	~	°	° ~	0	۰ م	۰ م	۰ م			Best DD	[45/15]	[90/30]	[60/0]	[60/30]
$0_1 0_2 0_6$		02	06			2 0	6 1 r	01	02	06	Trace	#	CFRP	Lower wing	Fuselage	Upper wing	Wideband
Lower wing	0.50	useiag	e 0.00	-	Uppe	r wing		1 00	ide bai		162	1	AS4/H35	212	429	586	167
1.00 0.00 -0.20	0.50	0.70	0.00	-1.			0.20	1.00	0.00	0.00	232	2	IM6/en	250	537	633	209
0.90 0.00 1.00	0.50	0.70	0.10	-0.	80 0	0.10	0.00	-1.00	0.00	0.00	2.52	-	TR/502	250	357	055	205
0.80 -0.10 0.10	0.50	0.80	0.10	-0.	70 (0.20 -	0.10	0.00	1.00	1.00	168	3	T3/F93	166	353	457	134
0.20 -0.40 0.00	0.50	0.90	0.10	0.	20 -0	0.40	0.00	0.00	-1.00	1.00	206	4	T3/N52	185	371	545	149
-0.50 0.00 0.00	-0.10	0.60	0.10	0.	50 0	0.00	0.00	0.00	0.00	1.00	139	5	C-Ply 55	252	535	665	207
0.20 0.20 0.20	0.20	-0.60	0.30	0.	20 0	0.00	0.20	1.00	1.00	1.00	163	6	C-Plv 64	262	535	752	213
0.30 -0.00 0.10	0.10	0.00	0.20	<u> </u>	301 -0	1.501	0.10	-1.00	-1.00	1.00	200	7	1047/077	202	620	672	240
					F	-					210		111/19/1	205	050	0/5	240
					[±Ψ						183	8	T800/Cyt	245	534	639	200
	Radius	0	15	30	45	60	75	90			180	9	IM7/8552	231	590	516	213
_	0	1332							_		195	10	IM7/MTM	318	754	717	275
_	15	1249	1169						_		144	11	T7/2510	188	393	535	151
	30	106	<u>Lower</u>	849							160	12	T650/EP	231	482	638	188
[±Φ	45	915	852	739	690						101	10	1047/0552	274	602	607	200
ι— Uι	per60	893	847	739	Wide	849			-		181	13	111/8552	2/4	602	687	227
	75	996	935	835	852	994	1169		-		158	14	T4708/MR	187	385	550	146
-		1056	006	000	015	1065	1240	1222	-		168	15	T8S/3900	445	1027	1028	376
_	90	1020	990	032	912	1002	1249	1332	_				Average	249	544	641	206

Fuselage

24

				Nor	maliz	ed wo	orking	stre	SS	
				[45/15]	[90/30]	[60/0]	[60/30]			
	Trace	#	CFRP	Lower	Fuselag	Upper	Wide	Ave	с٧	A
	139	5	C-Ply 55	1.01	0.98	1.04	1.00	1.01	2%	
	144	11	T7/2510	0.76	0.72	0.83	0.73	0.76	7%	
	158	14	T4708/MR	0.75	0.71	0.86	0.71	0.76	9%	
t <mark>S</mark>	160	12	T650/EP	0.93	0.89	0.99	0.91	0.93	5%	
	162	1	AS4/H35	0.85	0.79	0.91	0.81	0.84	7%	
	163	6	C-Ply 64	1.05	0.98	1.17	1.03	1.06	8%	
Ŧ	168	3	T3/F93	0.67	0.65	0.71	0.65	0.67	4%	
ne	168	15	T8S/3900	1.79	1.89	1.60	1.82	1.78	7%	
SS	180	9	IM7/8552	0.93	1.08	0.80	1.03	0.96	13%	IN
$\overline{}$	181	13	IM7/8552'	1.10	1.11	1.07	1.10	1.10	1%	IN
•	183	8	T800/Cyt	0.99	0.98	1.00	0.97	0.98	1%	T
	195	10	IM7/MTM	1.28	1.39	1.12	1.33	1.28	9%	T
	206	4	T3/N52	0.74	0.68	0.85	0.72	0.75	10%	IN
	218	7	IM7/977	1.14	1.16	1.05	1.16	1.13	5%	T4
	232	2	IM6/ep	1.01	0.99	0.99	1.01	1.00	1%	T
										+

	Ra	ting	
CFRP	Trace	Streng	th
AS4/H35	162	0.	<mark>84</mark>
IM6/ep	232	1.	00
T3/F93	168	0.	67
T3/N52	206	0.	75
C-Ply 55	139	1.	01
C-Ply 64	163	1.	<mark>06</mark>
IM7/977	218	1.	13
T800/Cyt	183	0.	<mark>98</mark>
M7/8552	180	0.	<mark>96</mark>
M7/MTM	195	1.	<mark>28</mark>
T7/2510	144	0.	<mark>76</mark>
T650/EP	160	0.	<mark>93</mark>
M7/8552'	181	1.	10
4708/MR	158	0.	76
F8S/3900	168	1.	78

	Normaliz	ed wo	orking	stre	SS
	[45/15][90/30] [60/0]	[60/30]		
D	Lauran Errala	11	Made	A	

Trace	#	CFRP	Lower	Fuselag	Upper	Wide	Ave	cv	
168	3	T3/F93	0.67	0.65	0.71	0.65	0.67	4%	
206	4	T3/N52	0.74	0.68	0.85	0.72	0.75	10%	
158	14	T4708/MR	0.75	0.71	0.86	0.71	0.76	9%	
144	11	T7/2510	0.76	0.72	0.83	0.73	0.76	7%	
162	1	AS4/H35	0.85	0.79	0.91	0.81	0.84	7%	ſ
160	12	T650/EP	0.93	0.89	0.99	0.91	0.93	5%	
180	9	IM7/8552	0.93	1.08	0.80	1.03	0.96	13%	
183	8	T800/Cyt	0.99	0.98	1.00	0.97	0.98	1%	
232	2	IM6/ep	1.01	0.99	0.99	1.01	1.00	1%	
139	5	C-Ply 55	1.01	0.98	1.04	1.00	1.01	2%	
163	6	C-Ply 64	1.05	0.98	1.17	1.03	1.06	8%	
181	13	IM7/8552'	1.10	1.11	1.07	1.10	1.10	1%	
218	7	IM7/977	1.14	1.16	1.05	1.16	1.13	5%	
195	10	IM7/MTM	1.28	1.39	1.12	1.33	1.28	9%	
168	15	T8S/3900	1.79	1.89	1.60	1.82	1.78	7%	

trength

Better understood and more simplistic

Keys to eliminate self-inflicted complexities

Aluminum

Isotropy

The new CFRP

- Master stiffness: $A_{11} + A_{22} + 2A_{66} =$ Trace (one and only)
- Scalar product: $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ (e.g., Tsai-Wu)
- Master failure criterion: omni envelopes (X and X' only)

• Homogeniety

- Conditions: [A*] = [D*], [B*] = 0 (less complexity)
- Double-double: $[\pm \Phi/\pm \Psi]_{rT}$ to replace $[0_p/\pm 45_q/90_r]_s$
- Rating and scaling: instant answer without recalculation
- Constant thickness
- Additive manufacturing: tapered to save weight

Legacy quad vs double-double: homogenization

Optimum: in- and out-of-plane homogenization where zones and taper transcend bays

Weight savings from tapered DD

Figure 1 $[\pm 19.3/\pm 67]_{rT}$ with r = 1, ... 8, using card sliding technique, AS4/8552, single-sided diaphragm forming, autoclave cured at 180°C

Weight savings in applications

Field-base laminates in lamination-parameter plots

Free book download and

Free registration training for graudate students

compositesdesign.stanford.edu

Better understood and more simplistic

Keys to eliminate self-inflicted complexities

Aluminum

Isotropy

The new CFRP

- Master stiffness: $A_{11} + A_{22} + 2A_{66} = Trace$ (one and only)
- Scalar product: $F_{ij}\sigma_i\sigma_j + F_i\sigma_i = 1$ (e.g., Tsai-Wu)
- Master failure criterion: omni envelopes (X and X' only)

• Homogeniety

- Conditions: [A*] = [D*], [B*] = 0 (less complexity)
- Double-double: $[\pm \Phi/\pm \Psi]_{rT}$ to replace $[0_p/\pm 45_q/90_r]_s$
- Rating and scaling: instant answer without recalculation
- Constant thickness
- Additive manufacturing: tapered to save weight