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Critique of Composite Materials

By Ray Conner, Head, Boeing Commercial, with WSJ, April 2015

“Composite materials in general are poorly understood. … therefore 

not employed optimally” on lessons learned from 787

By John Byrne, Head, Materials and Structures, Boeing Commercial
at Carbon Fiber in December 2014

“I do not say you don’t innovate, … innovate more on how to [design jets]

more simplistically, as oppose to driving more complexity, …How do you
innovate to make it more producible?  … more reliable?” on composites, …

poorly understood
not employed optimally”

more simplistically, more complexity,
more producible?
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more reliable?



Better understood and more simplistic

Aluminum
• Isotropy

• Homogeniety

• Constant thickness

The new CFRP
• Master stiffness:  A11 + A22 + 2A66 = Trace (one and only)
• Scalar product:  Fijsisj + Fisi = 1 (e.g., Tsai-Wu)
• Master failure criterion: omni envelopes (X and X’ only)

• Conditions: [A*] = [D*], [B*] = 0 (less complexity)
• Double-double: [±F/±Y]rT to replace [0p/±45q/90r]S
• Rating and scaling:  instant answer without recalculation

• Additive manufacturing: tapered to save weight 

Keys to eliminate self-inflicted complexities
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Trace = A11 + A22 + 2A66
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Trace = A11 + A22 + 2A66

Trace: one master stiffness constant for all laminates

Figures are the percent particitioning of trace to stiffness components
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Material Geometry
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FPF omni envelopes for Tsai-Wu and max strain
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Master envelopes from 15 radius-normalized CFRP
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Recovery of individual from master envelope
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DD failure envelopes: recovered from master
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Double-
double

Homoge-
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symmetry
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DD opportunities in manufacturing
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Not possible with quad
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double

Homoge-
nization

Master
laminate

One
parameter

X and X’
allowable

[A] = [D]
[B] = 0

No stacking
sequence

No
blending

Stiffness
scaling

Strength
scaling

Open hole
scaling

Orthotropic
metal

Simple taper,
metals cannot

Simiple to
design/test

Constant
interlaminar

shear

One-laminate
testing

Faster
allowable

DD opportunities in design

18

Not possible with quad



OHT and CAI data for quad and DD
Coupons from Chomarat/Hexcell

Data from Nettles, NASA

Coupons from Toray
Data from Waruna, NIAR Data from B. Falzon et al, Queen’s Univ Belfast, and RMIT19



18/4 = 4.5
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Soft; n21° = 0.53

R = 1: smooth, unit circle

FHT = (1 + n21°)OHT
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R = 2: open hole

Design allowable generation: [0/90] only + as-built

Reduction
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Strength ratio R

1) When R = 1, failure occurs
2) When R = 2, stress can be doubled or thickness reduced to 1/2 before failure
3) When R = 0.5, stress can be 1/2 or thickness doubled before failure
4) When applied stress is unity, the resulting R-value is the strength

For Tsai-Wu failure Fijsisj + Fisi = 1; 

substitute and solve for R:  

[Fijsisj]R2 + [Fisi]R - 1 = 0

A key improvement over failure criterion



Scaling options in input and output data

Failure stress: R = 1079 MPa Safety factor: R = 2.34 Failure stress: R = 1.00

Input: normalized vectors Input: actual stresses Input: failure stresses

459 x 2.34 = 1079
IM7/977-3

[02/±75]
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Legacy quad vs double-double: homogenization

Ply drop insidePly drop outside

Bricky stack Internal discontinuities

Optimum: in- and out-of-plane homogenization where zones and taper transcend bays27



170 mm

Figure 1 [±19.3/±67]rT with r = 1, ... 8, using card sliding technique, AS4/8552, single-sided diaphragm forming, 
autoclave cured at 180°C

Single
ply drops

Weight savings from tapered DD

41.5% weight savings
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Tapered [±0/±50] beam under fatigue
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Weight savings in applications
Airbus fuel tankGeneric weight savings

NASA adapter

Embraer fuselage plug
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[±F2/±Y] [±F4/±Y] [±Fn/±Y]

[±F/±Y]
[0/90/±F/±Y]

[±45/±F/±Y]
[0/±F/±Y]

As n increases
Its boundary

nears angle-ply

4-ply

6-ply
10-ply

6-ply

6-ply
5-ply

2-ply

Field-base laminates in lamination-parameter plots

Double-double Difficult to homogenize



Free book download and

Free registration training
for graudate students

compositesdesign.stanford.edu
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