

PREPREG PLATELET COMPOSITE MOLDING & PERFORMANCE WORKSHOP

Material System and Manufacturing Process
Microscopy and CT Scan Analysis
Anisotropic Coupled Flow Simulation
Failure Analysis of Fiber Orientation Informed Models

R. Byron Pipes

PRESENTATIONS AND FORMAT

- 8:30 Arrival
- **9:00** Description of the Problem **R. Byron Pipes** (Purdue)
- 9:30 Experiments in Platelet Composites Pascal Hubert (McGill)
- **10:15** Discussion
- 10:30 State of the Art of Rheology of Concentrated Suspensions **Don Baird** (VaTech)
- **11:15** Discussion
- 11:30 New Developments in Platelet Meso-scale Measurements Ben Denos (Purdue)
- **12:00** Discussion
- 12:15 Lunch
- 1:00 New Developments in Platelet Composite Rheology Tony Favaloro/Drew Sommer (Purdue)
- 1:30 Discussion
- 1:45 New Developments in Platelet Composite Performance Sergey Kravchenko (Purdue)
- 2:15 Discussion
- 2:30 Break
- 2:45 Discussion Groups
 - Flow and Fiber Orientation Simulation Chuck Tucker (UIUC)
 - Flow and Fiber Orientation Measurements **Tim Osswald (Wisconsin)**
 - Requirements for Certification Bill Avery (Boeing)
- 4:00 Summary Reports R. Byron Pipes
- **4:30** Depart

OUR GOALS FOR WORKSHOP

- Build the foundation for flight certification of molded platelet composite systems
- Engage the composites community in the issues of molded-structural composites
- Develop the engineering design competency in molded platelet composite systems
- Provide for the widespread and successful application of these materials systems in aerospace and vehicle structural applications

NEEDS OVERVIEW

QUESTIONS FOR CONSIDERATION

- How does the material system meso-scale interact with the macro scale of the molded structural element?
- What meso-structure descriptors are essential for performance predictions?
- How can flow simulations accommodate an anisotropic viscosity tensor?
- How can fiber orientation fields be predicted and determined for platelet/concentrated systems?
- How are deconsolidation and consolidation important in molding flows?
- How can the meso-scale be characterized with non-destructive and destructive methods (micro-CAT scans, sectioning and polishing, burn off)

COMPETENCIES TO DEVELOP

- Platelet and similar meso-phase structures in composite molding systems
- Anisotropic viscosities for prepreg platelet composites
- Models for anisotropic flow of hyper-concentrated platelet suspensions
- Anisotropic squeeze flow predictions
- Examples of typical molding anomalies such as knit lines and platelet distortion
- CAT scan detection of in situ fiber orientation fields in molded structural elements
- Strength models for prepreg platelet composites
- Comparisons of strength predictions and experimental tests
- Notch sensitivity of prepreg platelet composites

COMPOSITES PROCESSING

- Pre-impregnated platelet based composite molding systems
- Manufacture complex geometries with good mechanical performance by compression molding

PLATELET MICROSTRUCTURE

MEASURING FIBER ORIENTATION

CT SCAN ANALYSIS FOR FIBER ORIENTATION

- Low Density Air Black
- High Density Fiber/Matrix Light Gray
- Resolution: 53 μm per voxel edge
- Fiber Diameter: ~7 μm
- Platelet Thickness: ~100 μm
- CAN NOT DISTINGUISH INDIVIDUAL FIBERS

MOLDING FLOW SIMULATION

ANISOTROPIC VISCOSITY

MOLDING SIMULATION

MAPPING TO STRUCTURED MESH

PLATELET MOLDED COMPOSITE SYSTEM STRENGTH PREDICTION

COMPRESSION-MOLDED COMPONENTS

PRESENTATIONS AND FORMAT

- 8:30 Arrival
- 9:00 Description of the Problem R. Byron Pipes (Purdue)
- 9:30 Experiments in Platelet Composites Pascal Hubert (McGill)
- 10:15 Discussion
- 10:30 State of the Art of Rheology of Concentrated Suspensions **Don Baird** (VaTech)
- **11:15** Discussion
- 11:30 New Developments in Platelet Meso-scale Measurements Ben Denos (Purdue)
- **12:00** Discussion
- 12:15 Lunch
- 1:00 New Developments in Platelet Composite Rheology Tony Favaloro/Drew Sommer (Purdue)
- 1:30 Discussion
- 1:45 New Developments in Platelet Composite Performance Sergey Kravchenko (Purdue)
- 2:15 Discussion
- 2:30 Break
- 2:45 Discussion Groups
 - Flow and Fiber Orientation Simulation Chuck Tucker (UIUC)
 - Flow and Fiber Orientation Measurements **Tim Osswald (Wisconsin)**
 - Requirements for Certification Bill Avery (Boeing)
- 4:00 Summary Reports R. Byron Pipes
- **4:30** Depart