Close

Dear All, there are two channels for you to follow our research. 

1. We started a newsletter called Thoughts on Composites Modeling on LinkedIn. Please subscribe to it to get informed about our research and ideas we want to share with the community.

2. We moved our discussion forum to github at wenbinyugroup · Discussions · GitHub as it has more features which can serve you better. 

Wenbin 

Close

Wiki

Main Page / Abaqus SwiftComp GUI tutorials /

Predictions of 3D effective properties of particle reinforced composites

Problem-3-SG.jpg
Let the material properties of the particle and matrix be: Particle-E-glass: E11 =80 GPa, v12=0.2000 and

Matrix: E =3.35GP, ν=0.35

Particle volume of fraction is assumed to be 50%

The material properties are obtained from: “Soden, P. D., Hinton M. J. and Kaddour, A. S., Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates. Compos. Sci. Technol., 1998, 58(7), 1011”
youtube link:
https://youtu.be/XdmrqaI3wtw

Step 1: Input material properties

There are two materials namely particle/inclusion and matrix
a. Inclusion properties
b. Matrix properties
Problem-3mat.jpg
Problem-3mat2.jpg

Step 2: Select appropriate SG

a. Select 3D SG that represent the current example
problem-3.JPG
b. 3D SG wizard shows up
c. Select spherical inclusion as microstructure
d. Add inclusion volume fraction
e. Select material properties for inclusion and matrix
f. Click on OK to generate the SG
g. See generated 2D SG
Problem-3A.jpg problem-3bb.JPG
Step 3- Homogenization- 3D effective properties
a. Click on Homogenization
problem-1E.JPG
b. Homogenization wizard shows up ( see below)
c. Select 3D (solid) Model
d. Select analysis type, elastic
e. Click on OK to start homogenization
f. See the predicted 3D effective properties
problem-1H.JPG problem-3B.JPG

Step 4: Perform dehomogenization

a. Select dehomogenzation
Problem-2Dh.jpg
b. Dehomogenization wizard shows up
c. Select opt file
d. Add displacement to recovery displacement or strain loading to recover both local strain and stress, for current example problem let e11 be 0.005 and 2e23 be 0.002 e. Click on OK to start dehomogenization
f. See, dehomogenization
Problem-3Dh.jpg
Problem-3Dh2.jpg

youtube link:
https://youtu.be/XdmrqaI3wtw

Created on , Last modified on