Close

Dear All, there are two channels for you to follow our research. 

1. We started a newsletter called Thoughts on Composites Modeling on LinkedIn. Please subscribe to it to get informed about our research and ideas we want to share with the community.

2. We moved our discussion forum to github at wenbinyugroup · Discussions · GitHub as it has more features which can serve you better. 

Wenbin 

Close

Wiki

Main Page / Abaqus SwiftComp GUI tutorials /

Predictions of local/global stress/strain fields in composite structures

In this problem, we will try to show how to analyze the local-global fields in composite structures using SwiftComp-Abaqus-GUI.
The figure below can summarize how to do the local global analysis.
Problem-4A.jpg
Let the material properties a fiber (T300) property be: : E11=230 GPA, E22=15 GPA, v12=0.20, v23=0.0714, G12=15GPa, G7=3.928GPa.
and matrix (3501-6 epoxy) be: E =4.2GP, ν=0.34
The composite lay-up:

[0/90/45],,s,,

Thickness of each ply=0.00025m

“Soden, P. D., Hinton M. J. and Kaddour, A. S., Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates. Compos. Sci. Technol., 1998, 58(7), 1011”

Major steps to perform local-global analysis

Step 1: Input material properties

There are two materials namely fiber and matrix
a. Fiber properties
b. Matrix properties
Problem-4mat.jpg
Problem-4mat2.jpg

Step 2: Select appropriate SG

a. Select 3D SG that represent the current example
Problem-2c.jpg
b. 3D SG wizard shows up
c. Select spherical inclusion as microstructure
d. Add inclusion volume fraction
e. Select material properties for inclusion and matrix
f. Click on OK to generate the SG
g. See generated 2D SG
Problem-4AA.jpg (Image(Problem-4bb.JPG) failed - File not found)
Step 3- Homogenization- 3D effective properties
a. Click on Homogenization
problem-1E.JPG
b. Homogenization wizard shows up ( see below)
c. Select 3D (solid) Model
d. Select analysis type, elastic
e. Click on OK to start homogenization
f. See the predicted 3D effective properties
problem-1H.JPG problem-4I.JPG

Step 4: Export predicted effective properties to create a new model
a. Export the predicted effective properties
Problem-4R.jpg
b. A new model is automatically generated, this is to be used for generating a global model
c. Predicted effective properties exported as engineering constants
d. Predicted effective properties exported as stiffness matrix, D,
Problem-4M1.jpg
Step 5: Generate the global model
a. Click on Part and name as Part-1
b. Select ‘Shell’ from from Shape and ‘Planer’ from type
c. A new model is generated as shown ( 0.2m and thickness=0.15m)
Problem-4M2.jpg
Problem-4M3.jpg
Step 6: Create and Assign Section’
a. Click on Section and name as ‘Composite’
b. Select ‘Shell’ from from Category and ‘Composite’ from type
c. Edit section wizard shows up
d. Add section properties as shown and click OK
Problem-4M4.jpg
Problem-4M5.jpg
e. Assign material orientation
f. Click on Axis 3
Problem-4M6.jpg
Step 7: Create Assembly and Steps ‘
a. Select Assembly
b. Select ‘Part-1’ from Create Instance
c. Click OK
(Image(Problem-4M7.jpg) failed - File not found)
e. Create steps, accept the default setting
Problem-4M8.jpg
Step 8: Create load and boundary conditions ‘
a. Select load from Module
b. Select load
c. Name the load as ‘Load-1’
d. Select step 1
e. Select pressure
Problem-4M9b.jpg
Problem-4M9a.jpg
f. Select the area to be loaded
g. Add the load
youtube link:
Step 9: Create boundary conditions ‘
a. Select load from Module
b. Boundary Conditions (BC)
c. Name the BC as ‘BC-1’ and Select ‘Step-1’
d. Select ‘Mechanical’ from Category and Symmetry type BC
e. Click on OK
Problem-4M10a.jpg
f. Select the edge for BC
g. Select ENCASTER
Problem-4M10.jpg
Step 10: Create Mesh ‘

Step 11: Run the analysis ‘

Step 11: Results of the analysis ‘
Problem-R1.jpg
Step 12: Obtain global strains ‘
a. Click on probe values to obtain global strain
b. Click on a point on global structure
c. Select nodes and all direct from probe values wizard
d. The following strain values can be obtained, strain e11=-0.042709, e22=0.00212116, 2e12=0.00788458, and all others are zero
Step 13: Run dehomogenization ‘
a. Go back to micromechanical analysis with hexagonal SG and click on dehomogenization
Problem-2Dh.jpg
b. Add global strain obtain in step 12 to obtain local field in 0 degree lamina
C. Click on OK
Problem-Rd2.jpg
Step 14: Create view port and show both global and micromechanical local field analysis ‘
Problem-RR1.jpg
Problem-RR1.jpg

Created on , Last modified on