Close

Dear All, there are two channels for you to follow our research. 

1. We started a newsletter called Thoughts on Composites Modeling on LinkedIn. Please subscribe to it to get informed about our research and ideas we want to share with the community.

2. We moved our discussion forum to github at wenbinyugroup · Discussions · GitHub as it has more features which can serve you better. 

Wenbin 

Close

Wiki

Main Page / Gmsh4SC tutorials /

Elastic properties of a chopped fiber reinforced composite

Elastic properties of a chopped fiber reinforced composite

In this example, we want to compute the elastic properties of a chopped fiber reinforced composite 3D SG made of isotropic elastic matrix and transversely isotropic elastic fiber. The MSG solid model is used to predict the effective elastic properties of the SG. We will consider a matrix cell of dimensions 10 mm x 10 mm x 10 mm and ten chopped fibers of radius 1 mm and length 8 mm to have a fiber volume fraction of 0.25. The fiber and matrix properties and the orientation of the individual fibers are given in the tables below.


Software Used

We will use SwiftComp 2.1 and Abaqus CAE with the Abaqus SwiftComp GUI for this tutorial. Abaqus CAE will be used to model the 3D SG while SwiftComp will be used to run the elastic homogenization in the background.



Solution Procedure

The problem is solved in the following steps:

We will first create the matrix cell.


# Step 1. Go to create part -> Create a 3D solid extrusion -> Sketch the cross section as a 10 mm x 10 mm square with the origin at the center. Extrude the part to a length of 10 mm so the origin is at the center of one side. This will help in the assembly.

Part dimensionsPart dimensions



Part GeometryPart Geometry


# Step 2. Enter the material properties for the model. First we need to choose the material properties from the matrix property table. Within the Materials section of Abaqus CAE, we create a elastic isotropic material called “Matrix” and add the corresponding properties.


Material propertiesMaterial properties


Material propertiesMaterial properties


# Step 3. Create a homogeneous section, Section 1 for the matrix using the create section option.


Create a section, Section 1Create a section, Section 1


Assiging the material MatrixAssiging the material Matrix

# Step 4. Assign the section , Section 1 for the matrix cell using the assign section option. Name the set as Set-111 to differentiate different sets for different parts. Abaqus automatically assigns set- name for all parts as Set -1.


Assign a set renamed as Set 111Assign a set renamed as Set 111


Assiging the Section 1 for Set 111Assiging the Section 1 for Set 111

We will first create the chpped fiber


# Step 5. Go to create part -> Create a 3D solid extrusion -> Sketch the cross section as a circle of radius 1 mm with the origin at the center. Extrude the part to a length of 8 mm so the origin is at the center of one side. This will help in the assembly.

Part dimensionsPart dimensions



Part GeometryPart Geometry


# Step 6. Enter the material properties for the model. First we need to choose the material properties from the matrix property table. Within the Materials section of Abaqus CAE, we create a elastic isotropic material called “Matrix” and add the corresponding properties.


Material propertiesMaterial properties


Material propertiesMaterial properties


# Step 3. Create a homogeneous section, Section 1 for the matrix using the create section option.


Create a section, Section 1Create a section, Section 1


Assiging the material MatrixAssiging the material Matrix

# Step 4. Assign the section , Section 1 for the matrix cell using the assign section option. Name the set as Set-111 to differentiate different sets for different parts. Abaqus automatically assigns set- name for all parts as Set -1.


Assign a set renamed as Set 111Assign a set renamed as Set 111


Assiging the Section 1 for Set 111Assiging the Section 1 for Set 111


References

 # ref 1
 # ref 2

Created on , Last modified on